
Faster Algorithm for One-Sided Kadison-Singer via
Furthest-Neighbor Search

Zhao Song∗ Zhaozhuo Xu† Lichen Zhang‡

Abstract

We study the algorithmic version of Kadison-Singer problem under relaxed one-sided guar-
antee proposed in [Wea13]. The major contribution of this paper is a novel framework that
combines iterative analysis for discrepancy problem with one-sided guarantee and approximate
furthest-neighbor search data structure. Intuitively, combining iterative scheme and nearest-
neighbor search could give rise to fast greedy algorithms. However, we show that to solve
one-sided discrepancy-type problem, we need the furthest-neighbor search data structure. Our
framework can be extended to more one-sided discrepancy problems such as the rounding up
task in experimental design problem. Another interesting application is finding matrix rows
with small leverage scores, which is a key sub-task in cutting plane method [JLSW20].

To the best of our knowledge, this is the first work that explicitly studies one-sided Kadison-
Singer problem from an algorithmic perspective. Moreover, our algorithm improves upon exist-
ing approaches through the novel co-design of data structure and optimization.

∗zhaos@ias.edu. Institute for Advanced Study.
†zx22@rice.edu. Rice University.
‡lichenz@andrew.cmu.edu. Carnegie Mellon University.

1 Introduction

In mathematics, the famous Kadison-Singer problem [KS59] was a functional analysis problem posed
in 1959. Formally speaking, the problem is as follows:

Question 1.1 (Kadison-Singer problem). Does every pure state on the (abelian) von Neumann
algebra D of bounded diagonal opeartors on `2 have a unique extension to a pure state on B(`2), the
von Neumann algebra of all bounded operators on `2?

Various conjectures and statements are shown to be equivalent to the above question, for ex-
ample, Anderson’s paving conjectures [And79, And81], Weaver’s discrepancy theoretical formula-
tion [Wea04]. For a discussion of related conjectures, we refer readers to [CT06].

In 2014, a celebrated result by Marcus, Spielman and Srivastava [MSS15] has given a positive
answer to the Kadison-Singer problem. Specifically, they provided a affirmative answer to Weaver’s
discrepancy conjecture, which is now a theorem:

Theorem 1.2 ([Wea04, MSS15]). There exists universal constants s ≥ 2 and θ ≥ 0, so that we
have the following: given a set of vectors v1, . . . , vm ∈ Cd satisfying ‖vi‖ ≤ 1 for all i, and suppose
that

∑m
i=1 |〈u, vi〉|2 = s. Then there exists a partition S1, S2 of {1, . . . ,m} such that for any unit

vector u ∈ Cd, ∑
i∈Sj

|〈u, vi〉|2 ≤ s− θ, j = 1, 2.

Their main result, which implies a positive answer to Theorem 1.2, can be viewed as a matrix
concentration result similar to [Rud96, AW02] for rank 1 matrices, but much stronger. Their
discrepancy result is further strengthened or generalized in [Coh16, Brä18, KLS20].

In this paper, we try to solve Kadison-Singer problem from an algorithmic perspective. Specifi-
cally, we observe that Theorem 1.2 can be formulated as an algorithmic problem: Suppose we are
given a set of m vectors v1, . . . , vm ∈ Cd satisfying the conditions of Weaver’s discrepancy formu-
lation, then, how fast can we find the desired partition S1, S2 of {1, . . . ,m}? We note that the
proof in [MSS15] can be easily extended to an exponential time algorithm by examining all sub-
sets of {1, . . . ,m}, which takes O(2m) time. By improving the running time of approximating the
largest root of a characteristic polynomial, [AGSS18] gives an 2Õ(m1/3) time algorithm. However,
it still remains open whether it is possible to solve the algorithmic problem posed in polynomial
or even quasi-polynomial time. Instead of trying to obtain an exponential speedup, we take a step
back and consider a simpler version of the algorithmic Kadison-Singer problem, which is introduced
in [Wea13].

Note that in the original formulation proposed by Weaver, the resulting partition can be viewed
to have a two-sided guarantee, namely, we are looking for a subset S such that

θ ≤
∑
i∈S
|〈u, vi〉|2 ≤ s− θ. (1)

This would naturally imply a similar upper bound guarantee on [m] \ S. A simpler task, which is
called one-sided version of Kadison-Singer, is to find a subset S that only satisfies the upper bound
of Eq. (1). This means we can only get a lower bound on [m]\S, the upper bound can be much larger
than s − θ. Such a simplification does admit a polynomial time algorithm, which can be derived
from the proof of Theorem 3.3 in [Wea13]. The algorithm constructs set S in a greedy fashion,
it searches for a vector that is “small” based on certain measure and adds it to S. Interestingly,

1

there are plenty of discrepancy type problems that seek one-sided guarantee in this format, such as
experimental design through regret minimization [AZLSW20]. Proposed algorithms for this kind of
problems share similar greedy structure: at each iteration, computes certain measure against each
vector and find the one with smallest/largest measure. Even for small d regime, it seems inevitable
that we have to pay at least Ω(m) cost per iteration. We ask the following question:

Does there exist a class of algorithms that can break the O(m) barrier per iteration?

To break this barrier, we follow a growing trend in the field of optimization algorithm: using
efficient data structures to speedup expensive operations in an iterative regime, as popularized
in [CLS19, LSZ19, JLSW20, Bra20, BLSS20, DLY21, SY21, JSWZ21, Bra21]. We point out that
our technique is completely novel, in the sense that 1). it reduces an optimization objective into a
general search problem, 2). solving the search problem through the use of efficient data structure.

In this work, we focus on a class of data structures which is less popular and prevalent, namely,
the furthest-neighbor search (FN), or minimum inner product (Min-IP) data structures. To start
with, notice one can formulate one-sided Kadison-Singer as the following discrepancy problem:

Given a set of points, finding a subset so that the sum of their inner products with points on unit
circle are minimized, or in other words, the sum of their distances to unit circle is maximized.

Put it more plainly, one can think of it as a packing game: we are given a box with fixed volume
and a bunch of balls with different volumes. The game is to pack as many balls into the box as
possible. Furthest-neighbor search data structure will always find an exact or approximate ball with
small inner product/volume, thus, we can pack a small ball into the box and give us more room for
the remaining balls. We remark that such a simple game captures a wide range of interesting one-
sided problems in discrepancy theory, for example, one-sided Kadison-Singer problem, experimental
design problem through regret minimization [AZLSW20]. In all these tasks, one seeks a subset of
vectors that gives a one-sided guarantee, typically in the form of∥∥∥∥∥∑

i∈S
viv
>
i

∥∥∥∥∥ ≤ a
for some positive number a. As we will show in this paper, our scheme with furthest-neighbor search
can be used to improve the running time of the deterministic procedure in [AZLSW20]. In their task,
they are given a fractional solution π ∈ [0, 1]m, the goal is to round up to an integral solution with
support at most ‖π‖1, such a task can be reformulated into the following: given

∑m
i=1 πiviv

>
i = Id,

finding a subset of cardinality at most ‖π‖1 such that

λmin

(∑
i∈S

viv
>
i

)
≥ 1− 3ε.

In order to solve this task, they proposed a swapping algorithm that greedily constructs set S. At
each round, they look for a vector in S with small inner product, and another vector in [m]\S with
larger inner product, then swap them. In the regime where n is large, we can adapt our Min-IP data
structure for the in-S search.

We will also show that such a scheme can be deployed in the field of optimization. As an example,
consider cutting plane method (CPM) that is extensively studied and used for many problems where
solving convex programming is a task or a necessary subtask [LW17, ADLS17, Jia21]. One of the
key steps in CPM is to reconstructing the constraint matrix through separation oracle. As shown
in [JLSW20], sometimes it is necessary to remove redundant constraints through leverage score.
Surprisingly, our framework can be used to accelerate the step of computing small leverage score,
as leverage score computation is essentially computing inner product, and furthest-neighbor search
data structures are efficient under insertion and deletion.

2

2 Our Results

Throughout this section, we use high probability to denote 1− 1
poly(m) and we use Od to hide poly(d)

factors and Õd to hide poly(d, logm) factors.

2.1 Main Results

We start by presenting our exact algorithm for algorithmic one-sided Kadison-Singer problem posed
in [Wea13].

In the following result, we show that if pre-processing on vectors is allowed, we can improve the
naive md time to o(m) when dimension is d relatively small compared to m.

Theorem 2.1 (Exact algorithm, informal of Theorem 6.9). Let N ∈ N+, if {v1, . . . , vm} is a finite
sequence of vectors in Cd satisfying ‖vi‖2 = 1√

N
,∀i ∈ [m] and

∑m
i=1 |〈u, vi〉|2 = 1 holds for all

unit vector u ∈ Cd. Suppose we preprocess all the m vectors. Then for any n < m, there exists a
deterministic algorithm that takes n iteration and each iteration takes Od(logm) timeto find a set
S with cardinality n such that ∑

i∈S
|〈u, vi〉|2 ≤

n

m
+O(

1√
N

).

The clear advantage of our deterministic algorithm is its query time only depends logarithmically
on m. However, this kind of exact furthest-neighbor data structure makes use of Voronoi diagram,
which suffers from curse of dimensionality, i.e., in initialization phase, it takes time exponential in
dimension d, makes it only applicable when d is small. In contrary, our approximate algorithm has
much milder dependence on d, makes it more applicable in a wider range of settings.

Theorem 2.2 (Approximate algorithm, informal of Theorem 6.11). Let τ, c ∈ (0, 1) and N ∈
N+, if {v1, . . . , vm} is a finite sequence of vectors in Cd satisfying ‖vi‖2 = 1√

N
,∀i ∈ [m] and∑m

i=1 |〈u, vi〉|2 = 1 holds for all unit vector u ∈ Cd. Then for any n < m and unit vector u ∈ Cd,
there exists a randomized algorithm (success with high probability) that takes time T to find a set S
(|S| = n) such that ∑

i∈S
|〈u, vi〉|2 ≤

1

c
· (n
m

+O(
1√
N

)).

Further, we have

• If c ∈ (τ, 8τ
7+τ), then T = Õd(m

1.5 + n ·m0.5);

• If c ∈ (τ, 400τ
399+τ), then T = Õd(m

1.01 + n ·m0.01).

We make several remarks regarding the approximate algorithm theorem. First, note the two
parameters τ and c serve as an approximate factor for the final solution, it is tempting to condense
these two parameters into one. However, the parameter τ comes from the data structure, i.e., the
data structure expects query of the type that finding the minimum inner product at most τ , and it
will output an approximate solution with the guarantee that the inner product is at most τ/c. One
expects a natural trade-off on c, i.e., a larger c implies a better quality of solution in the expense of
a worse runtime. Such trade-off is also reflected in the theorem, i.e., if c can be chosen closer to 1
(8τ

7+τ >
400τ

399+τ), then we get a better approximation with a worse running time.

3

The running time can be parsed into two parts: the Õd(m1.5) and Õd(m1.01) is the initialization
time of furthest-neighbor/minimum inner product data structure, and the second term can be
decomposed into the following:

• n is the number of iterations.

• dω is the time to compute certain matrix inverse at each iteration, which is absorbed by Õd(·).

• Õd(m
0.5) and Õd(m0.01) is the query time of data structure.

Note the initialization time no longer depends exponentially on d, makes it useful in most
settings. The trade-off here is a slower query time (m0.5 or m0.01) and an approximate guarantee
instead of exact solution. Below is a table comparing the runtime complexity of various algorithms:

Algorithm Prep. Cost. Total Time Comments
[Wea13] 0 m n ·m
Alg. 3 md2/2 1 n+md2/2 Our exact algorithm
Alg. 4 m1.5 m0.5 n ·m0.5 +m1.5 Ours with high accuracy
Alg. 4 m1.01 m0.01 n ·m0.01 +m1.01 Ours with low accuracy

Table 1: Comparison of different algorithms, for simplicity of presentation assume m � d and
ignore poly(d, logm) factor. All algorithms require n iterations. Prep. denote the preprocessing
time of data structures. Cost. denotes the cost spent in each iteration of the algorithm. Simplified
version of Table 3.

For this problem, the first polynomial time algorithm is given in the proof of [Wea13], which is a
simple greedy algorithm that takes time Od(nm). In contrast, our approximation scheme gives only
depends on nm0.5 or even nm0.01, which is much more feasible if both m and n large. By utilizing
an amortization argument, one can amortize the preprocessing/initialization time into n iterations,
this means, e.g., in the high accuracy approximation scheme where it takes Õd(m1.5) to initialize,
as long as n ≥ Õd(m0.5), our algorithm is faster than algorithms not using such data structures. By
trading runtime with accuracy, it is possible to achieve a even faster preprocessing and query time
than m1.01 and m0.01. To the best of our knowledge, this is the fastest approximation algorithm to
solve algorithmic one-sided Kadison-Singer problem.

Another result we have is to apply our Min-IP and AFN data structure to the experimental
design problem through regret minimization as posed in [AZLSW20]. We provide a randomized
and approximate algorithmic result for a more generalized version of this question:

Theorem 2.3 (Informal version of Theorem 7.16). Let π ∈ [0, 1]m with ‖π‖1 ≤ n and
∑m

i=1 πixix
>
i =

Id. Let γ ≥ 3 and ε ∈ (0, 1
γ]. Then, there exists a subset S ⊂ [m] with |S| ≤ n such that

λmin(
∑
i∈S

xix
>
i) ≥ 1− γ · ε.

Let τ ∈ (0, 1) and c ∈ (1
γ−1 , 1). If n ≥ 6d/ε2

γ−1−1/c and α =
√
d/(cε), then there exists a randomized

algorithm (success with high probability) that takes time T to find such S. Furthermore,1

• If c ∈ (τ, 8τ
7+τ), then T = Õd(m+ ε−1n1.5);

• If c ∈ (τ, 400τ
399+τ), then T = Õd(m+ ε−1n1.01).

4

Algorithm Prep. Cost. Total Time
[AZLSW20] m m m+ ε−1nm

Alg. 5 m+ n1.5 n0.5 m+ ε−1n1.5

Alg. 5 m+ n1.01 n0.01 m+ ε−1n1.01

Table 2: Comparison of different algorithms for experimental design, for simplicity we assume
n� m−n and ignore poly(d, logm) factor. All algorithms require ε−1n iterations. Prep. denotes
the preprocessing time. Cost. denotes the cost spent in each iteration of the algorithm. Simplified
version of Table 4.

We make some observations of above theorem. In our approximate result for one-sided Kadison-
Singer, where the approximate search gives a solution with worse guarantee. Here, we recover
exactly the same guarantee as the vanilla greedy algorithm in the expense of a larger size of set
S. This is an interesting but reasonable trade-off, since larger n implies we can add more potential
vectors into the set, which makes the problem easier. In some sense, this is similar to have a solution
with worse guarantee.

2.2 Technique Overviews

This section is dedicated to overview our algorithmic framework and the main techniques we em-
ployed. To start off, consider the upper barrier potential function studied in [Sri10, BSS12, Wea13,
MSS15]:

Definition 2.4. Let T be a square matrix, for any a > ‖T‖, we define the upper barrier potential
function Φa(T) as Φa(T) := tr[(aI − T)−1].

Prior to its generalization to discrepancy problem, this class of potential functions has been
widely utilized in finding a small size graph spectral sparsifier, see e.g., [BSS12, LS15, LS17].

The greedy algorithm of [Wea13] iteratively constructs the set S. Let St denote the set at around
t, it also maintains a matrix T :=

∑
i∈St viv

>
i . At each round, it looks for an index i∗ ∈ [m] \ St

such that

v>i∗(aj+1I − T)−2vi∗

Φaj (T)− Φaj+1(T)
+ v>i∗(aj+1I − T)−1vi∗ ≤ 1, (2)

where aj is a sequence of numbers defined inductively.
As we will show later, if we construct set S and maintain matrix T in a certain manner, we can

guarantee there exists a vector satisfies Eq. (2), hence, we know the vector that gives the minimum
value in the LHS of Eq. (2) must also satisfies the criteria.

Greedy Vector Selection as Minimum Inner Product Search. We observe that the LHS
of Eq. (2) can be recast into the following inner product of two matrices:〈

vi∗v
>
i∗︸ ︷︷ ︸

rank 1

,
(aj+1I − T)−2

Φaj (T)− Φaj+1(T)
+ (aj+1I − T)−1︸ ︷︷ ︸

positive definite

〉
, (3)

1We consider the regime where n � n−m, e.g., n = m−mo(1) and n−m = mo(1), therefore we ignore the factor
(m− n) · d2.

5

if we further vectorize these two matrices, it turns into a standard inner product between two vectors
of dimension d2. This means we can reduce the greedy construction of set S into a minimum inner
product search (Min-IP) problem: design an efficient data structure that answers the query asking
for a matrix/vector that has the minimum inner product with a bunch of preprocessed matrices.

Solving Minimum Inner Product Search via Furthest-Neighbor Search. We could solve
Min-IP by solving its dual problem, Furthest Neighbor Search (FN). FN represents the problem that
given a query x ∈ Rd, we need to design a data structure to retrieve vector y from a dataset Y ⊂ Rd
such that ‖x − y‖2 is minimized. Given the query set X ⊂ Rd and a dataset Y ⊂ Rd, we perform
the following transformations for any x ∈ X and y ∈ Y .

ϕ(x) =
[
x>/DX 0

√
1− ‖x‖22/D2

X

]>
, ψ(y) =

[
y>/DY

√
1− ‖y‖22/D2

Y 0
]>
,

where DX is the maximum diameter of X and and DY is the maximum diameter of Y . In this
way, we map x ∈ X and y ∈ Y to unit vectors. Moreover, ‖ϕ(x) − ψ(y)‖22 = 2 − 2〈ϕ(x), ψ(y)〉.
Furthermore, arg maxy∈Y ‖ϕ(x)−ψ(y)‖2 = arg miny∈Y 〈x, y〉. Therefore, we could retrieve Min-IP of
x with respect to Y by retrieving FN of ϕ(x) with respect to ψ(x). Therefore, our goal is to look for
a data structure that solves FN efficiently. Note that the transformations should avoid the target
minimum inner product to be negative, close to zero, or close to 1. Therefore, we may increase
or decrease Dx and Dy accordingly. We remark such a formulation can be extended to various
one-sided discrepancy-type problem, which progresses through upper barrier potential function.

Design of Data Structures. Though there exists available FN data structures, the integration
of them to solve Min-IP problem in optimization is not straightforward. We design our FN data
structure for Min-IP following these criterion: 1). the data structure should have theoretical guar-
antees on the query time, preprocessing time and space, 2). the space-time trade-offs of the data
structure should adapt to the our problem, 3). the Min-IP estimation error by the data structure
would not break the convergence of the optimization algorithm, 4). the data-structure should sup-
port dynamic operations such as insertion and deletion of point from the data structure, 5). the
data-structure should handle non-independent Min-IP queries.

We start with the exact FN solution such as furthest-point Voronoi diagrams. Given a d-
dimensional, n-point dataset, furthest-point Voronoi diagrams takes query timeO(d log n) to retrieve
the exact FN for a query q ∈ Rd. However, the preprocessing time of furthest-point Voronoi diagrams
is exponential to the dimension d, which makes the data structure unscalable to higher dimension.
To overcome this curse of dimensionality, we focus on the approximate FN data structures with faster
preprocessing time. In order to achieve a better overall runtime using approximate data structure,
we need to consider the impact of using an approximate solution on the set S we construct. We
show that if at each round, we can only find an index i∗ such that the quantity of Eq. (2) is bounded
by some β > 1, then the quality of our final set S is β times worse than the exact construction.
More specifically, at each round, we query our approximate data structure to return an index i∗

such that

v>i∗(aj+1I − T)−2vi∗

Φaj (T)− Φaj+1(T)
+ v>i∗(aj+1I − T)−1vi∗ ≤ β.

Fortunately, it is possible to modify the update rule to achieve this approximation, in the expense
of worse quality of solution. Intuitively, since the criteria value has been blown up by a factor β,
we want to compensate it through scaling down the outer product vi∗v>i∗ by a factor of β. Instead

6

of directly updating the matrix T via vi∗v>i∗ , we only use 1
β copies of this outer product to update

T . By doing so, we can progress the greedy construction of S using this scaled-down version of T
and finding a vector with β-approximate criteria at each iteration. The final result we obtain is on
the spectral norm of matrix T , since overall, we scale it down by a factor of β, our final solution is
β times worse than the exact algorithm:∥∥∥∥∥∑

i∈S
viv
>
i

∥∥∥∥∥ ≤ β · (nm +O(
1√
N

)).

We remark that utilizing data structure is especially valuable when the number of iterations n is
large. Greedy algorithms without using data structure such as Alg. 1 and Alg. 2 don’t need to pay
for preprocessing/initialization time and space, in the expense of slower query time per iteration.
In contrast, algorithms with data structure as Alg. 3 and Alg. 4 pay more time on preprocessing
while enjoying a better query time. Note that the preprocessing time can be amortized into the
cost per iteration via Tinit + #iters · Tquery = #iters · (Tinit#iters +Tquery), as #iters = n becomes larger,
the preprocessing time becomes less relevant and the use of data structure becomes advantageous.
This justifies our use of approximate data structure, which has a slightly large preprocessing time
with a small query time. However, it is still unclear to us whether it is possible to get an exact
data structure not suffering from the curse of dimensionality and hence becomes feasible under large
iteration number n.

Our data structure should also support insertion and deletion of data points. The major reason
is the search space ([m] \ S in one-sided Kadison-Singer and S in experimental design) is dynam-
ically changing, we need to add or remove new point in the process. Fortunately, with our AFN
data structure, the time complexity of insertion and deletion data point is equal to the query time
complexity. This property leads to efficient maintenance of data structures. However, in our formu-
lation, the query to AFN data structure at each step is dependent on the previous steps. Thus, the
standard union bound over queries could not be directly applied. We propose a query quantization
approach that first locates the query into its nearest vertex on an ε-net. Then, we query with the
vertex in the data structure. Although this operation would introduce an ε additive error on the
final estimation of inner product, the total failure probability could be union bounded.

2.3 Application and Future Direction

Besides one-sided Kadison-Singer problem and experimental design problem, our framework can
be further extended to one-sided discrepancy problem with a vanilla greedy construction using a
minimum inner product criteria, similar to (2). Another surprising and interesting application is
on cutting plane method (CPM). One key sub-task of a CPM solver is to find a row of constraint
matrix A with small leverage score below certain threshold, which is exactly the kind of task we
can apply Min-IP data structure. We give a preliminary view of such framework in Section A.

The major message of this paper is a general algorithmic framework of solving discrepancy
problem with one-sided guarantee, using dynamic data structures. By preprocessing vectors, we
build up Min-IP data structures with efficient query and update, which helps to reduce the cost
per iteration in an iterative scheme. One of the ultimate goals along this line of work is to solve
the algorithmic version of Kadison-Singer problem (two-sided), i.e., find a set S with the guarantee
θ ≤

∑
i∈S |〈u, vi〉|2 ≤ s − θ, in quasi-polynomial time with respect to m. From high level, we ask

the following data structure design problem: given m vectors v1 through vm, does there exist a data
structure that can preprocess these m vectors and answer the query on the set of vectors

∑m
i=1 civi,

where ci ∈ {−1,+1}? Intuitively, given m points, can we design a data structure that answers

7

query in a restricted span of these m points and can be dynamically updated, in quasi-polynomial
time? We believe such data structure can be exploited to solve the original Kadison-Singer problem
in quasi-polynomial time, which is better than current state-of-the-art involving approximating
largest root of polynomial in 2Õ(m1/3) time [AGSS18]. Note that when d = poly(logm), we can
aim at a preprocessing time of mpoly(d) = 2poly(logm) which could already be significant progress on
algorithmic Kadison-Singer.

3 Literature Review: Data Structure and Optimization

We first give a summarization of this section. The two major directions we want to review is furthest-
neighbor search and optimization with efficient data structure. The furthest-neighbor search prob-
lem is a well-studied data structure problem, but seeing much rare applications compared to the
nearest-neighbor problem. We review the exact and approximate versions of it. Optimization with
the use of data structure has been a popular trend these years. We review its applications in linear
programming and convex programming.

3.1 Literature on Furthest Neighbor

Given a query vector q ∈ Rd, the goal of the furthest neighbor problem is to retrieve a vector p from
a n-point set P ⊂ Rd such that the ‖q − p‖2 is maximized. Over the last several decades, plenty of
methods are proposed to solve the furthest neighbor problem without computing the distance with
each element in the database. We categorized the existing literature into exact and approximate
methods. We also discuss both algorithmic results and hardness results.

Exact Furthest Neighbor. For exact method, [Yao82] show that there this an algorithm that
takes O(d log n) query time, O(n2d+1

) preprocessing time and space to solve furthest neighbor prob-
lem. [VKSdBO00] constructs the furthest point Voronoi diagram to solve the furthest neighbor
problem. The furthest point Voronoi diagram achieves query time O(d log n) with preprocessing
time O(n log n+nd/2) and space O(nd/2). [AMS92] proves that there exists a randomized algorithm
so that for a query in Rd, it takes expected total query time O(n1−1/(d/2+o(1))) with both space and
preprocessing O(nd/2+o(1)) time to find the furthest neighbor for every q ∈ Q from P . However,
these methods suffer from the curse of dimensionality and could not scale to higher dimension.

Approximate Furthest Neighbor. The approximate methods relax the objective of the fur-
thest neighbor problem with a multiplicative error c > 1 and propose the approximate furthest
neighbor (c-AFN) problem. Given the furthest neighbor with Euclidean distance greater than r, the
AFN targets at retrieving vectors with distance at least r/c. Bespamyatnikh [Bes96] first proposes
a fair split tree and solve (1 + ε)-AFN in query time O(1/εd−1) and space O(n2) with preprocessing
time O(n2). This query time is exponential to d so that the fair split tree approaches also suffers
from the curse of dimensionality. In the following decades, there exists a set of approaches to tackle
this bottleneck. Indyk [Ind00] proves that a (1 + ε)-AFN problem over n-points set P ⊆ {0, 1}d
could be reduced to an approximate nearest neighbor search problem over an n-points set in {0, 1}d
with approximate factor 1 + ε/6. This statement open the direction for solving AFN in high di-
mension using approximate nearest neighbor techniques. Following this direction, Goel, Indyk
and Varadarajan [GIV01] propose a reduction algorithm that solves (1 + ε)-AFN in query time
O(dn1/(1+ε)) with both preprocessing time and space in O(dn1+1/(1+ε)). Goel, Indyk and Varadara-
jan [GIV01] also shows that

√
2-AFN could be solved in query time O(1) with both preprocessing

8

time and space in O(dn). Indyk [Ind03] proposes an asymmetric embedding approach to remove
the exponential dependence in dimension. For any δ > 0, this method solves (c+ δ)-AFN in query
time O(n1/c2d log n log2

1+δ d) with both preprocessing time and space in O(n1+1/c2d log n log2
1+δ d).

Agarwal and Sharathkumar [AS10] propose an algorithm using Blurred Ball Cover that answers
(
√

2 + ε)-AFN in query time O((d/ε3) log(1/ε)), space O((d/ε3) log(1/ε)) and preprocessing time
O(n · (d/ε2) log(1/ε)).

In theory, [ACW16] also shows results for bichromatic AFN. The goal of bichromatic AFN is to
find AFN for every element in the n-point query set Q ⊂ Rd from the n-point data set P ⊂ Rd.
[ACW16] proves that we could find (1 + ε)-AFN for each q ∈ Q from P in total query time near
dn− n2−Ω(ε1/3/ log(1/ε)).

Constant approximation for Min-IP. In [ACW16], they showed an n2−1/Õ(
√
c) time algorithm

that provides constant approximation for Min-IP with n vectors from {0, 1}c logn. Later, Chen
and Williams [CW19] showed an n2−1/O(log c) time algorithm that gives constant approximation to
Min-IP. Orthogonal vectors OV is conjectured to be no truly subquadratic time algorithm. [CW19]
proved OV is equivalent to approximate Min-IP.

3.2 Previous Techniques for Speedup Optimization

The running time of a general iterative type (e.g., optimization) algorithm has two parts, one part
is the number of iterations and the other part is the cost spent in each iteration. Over the last
few decades, the number of iterations for many problems has been optimized. The next natural
direction is to reduce the cost per iteration. In order to improve the running time of solvers for
solvers such as central path method for linear programming (LP) and cutting plane method (CPM)
for convex programming, a number of techniques such as sampling, sketching, vector-maintenance,
sparse recovery have been proposed and studied. We will briefly survey all of these techniques in the
following discussion. We also remark that the technique we use in this paper follows the trending
direction in this field, which is to use efficient data structure to reduce the cost per iteration.
However, the data structure we consider is novel and completely different from all these previous
works.

Sampling. One popular method of solving linear programming is so-called central path method.
Roughly speaking, it can be formulated as follows: given a fixed matrix A and two dynamic sequence
of positive vectors w1, w2, · · ·wT ∈ Rn, and h1, h2, · · · , hT ∈ Rn let P (w) be defined as P (w) :=√
WA(A>WA)−1A>

√
W , where W is the diagonal matrix such that the i-th diagonal Wi,i is wi.

The goal is to compute P (wt) · ht in each iteration. The most naive solution is to compute P (wt)
and the following matrix-vector product at each iteration, but it is expensive and does not exploit
the structure of the sequence wt and ht. One natural idea is to consider approximating the product
P (wt) ·ht instead of computing it exactly, if one can show that the general optimization framework
can tolerate the error incurred by approximation, then the cost of computing both P (wt) and the
matrix-vector product can hopefully be reduced. In a recent work [CLS19], Cohen, Lee and Song
showed that it suffices to sample

√
n coordinates of ht to obtain a good error bound. More concretely,

let D ∈ Rn×n be the diagonal sampling matrix with roughly
√
n non-zero entries. Applying D to

ht, they instead compute a matrix-vector product with much smaller support of the vector, which
greatly improved the running time of this product. Combined with a novel projection maintenance
technique, they delivered an algorithm that solves linear programming in time Õ(nω + n2+1/6).

9

Sketching. Different from sampling, sketching is another powerful technique for saving cost on
matrix-vector product. Sketching has many applications in both TCS and ML problems [Sar06,
CW13, NN13, BWZ16, SWZ17, ALS+18, XZZ18, SWZ19, WZD+20]. Recently, [LSZ19, SY21]
showed how to use sketching matrix R ∈ R

√
n×n to recover the Õ(nω + n2+1/6) result from [CLS19]

via using sketching matrix R throughout the iterations. Mathematically speaking, they use the
sketching matrix as follows: R>R · P (w)h and P (w) · R>R · h. The first one is typically called
“sketch on the left”, the intuition is the data structure maintains a sketched projection R · P (wt)
at each round, when querying the matrix-vector product P (wt) · ht, the running time reduces from
O(n2) to O(n3/2). The second one can be viewed as “sketch on the right”, where the vector h is
sketched, this transforms a product between n×n matrix and length n vector into a chain product
of (P (wt) ·R>) · (Rht). By maintaining P (wt) ·R>, the cost of product can be reduced to O(n3/2).

Vec-maintenance. In the above sampling and sketching techniques, both algorithms treat vector
ht as worst case vector in each iteration, i.e., the change of coordinates from ht and ht+1 can be
large. However, [Bra20] has an elegant observation that the sequence {ht}Tt=1 is changing slowly in
each iteration. Thus, maintaining the product P (wt)·ht or even part of it provides extra information
and enables fast update. By doing so, [Bra20] is also able to recover the result in [CLS19] with a
completely deterministic algorithm. In a more recent work [JSWZ21], they combined sketching and
vector-maintenance to further improve the running time of linear program solver to Õ(nω+n2+1/18).

Sparse Recovery. Another useful technique is to use sparse recovery, as illustrated in [BLSS20].
In their work, they formulate it as an abstract vector maintenance problem: given a sequence {ht}Tt=1

and {gt}Tt=1, maintain the sum
∑t

i=1G
iAhi for some fixed comforming matrix A. They have shown

that it is enough to get a multiplicative approximation of this sum, so it suffices to detect entries
with large change across the iterations, and update those entries. Such a task can be combined with
the well-studied heavy hitter/sparse recovery technique, which involves using a small, sparse and
random sensing matrix Φ ∈ Rk×n with k � n and “sensing” the large entries of vector x through
Φx. Thus, the idea is to store ΦGtA at each round, which can be computed fast if gt does not
change too much from gt−1, and detect large entries through computing (ΦGtA)ht. Joint with an
inverse maintenance data structure that uses a sparsifier, they can solve linear program with a tall
constraint matrix where there are d variables and n constraints and n� d, in time Õ(nd+ d3).

From LP to Cutting Plane Method. Cutting plane method is a class of optimization algo-
rithms that iteratively queries a separation oracle to cut the feasible set that contains the optimal
solution. There has been a long line of work to obtain fast cutting plane methods [Sho77, YN76,
Kha80, KTE88, NN89, Vai89, AV95, BV02, LSW15, JLSW20].

The general framework of cutting plane method is similar to LP in the sense that it needs to
maintain the projection P (wt), however, it is harder in the sense that the constraint matrix A is
no longer fixed, at each round, a row of A is either inserted or deleted based on its leverage score,
which corresponds to diagonal entries of P (wt). One can think of leverage score as a measurement
of the importance of a constraint in matrix A, intuitively, if one constraint is “similar” to most
other constraints, then it would have a small leverage score and thus be removed. Hence, the key
challenge is to maintain the projection under insertion and deletion, and efficiently approximate
leverage score. By using a three-layered data structure and sketching, [JLSW20] achieves a cutting
plane method solver with O(n log κ) calls to separation oracle and an extra O(n2) cost per call,
where κ = nR/ε and R is the radius of the box.

10

Roadmap. In Section 4, we give a preliminary on notations, definitions, some useful facts and
the problem setup for Kadison-Singer. In Section 5, we present our implementation of exact and
approximate Min-IP data structure using furthest-neighbor search. In Section 6, we present our
algorithmic result for one-sided Kadison-Singer problem with approximate guarantee. In Section 7,
we utilize our algorithmic framework on the rounding up of experimental design problem. In Sec-
tion A, we give a preliminary overview on how to use Min-IP data structure to implement for a
sub-task of cutting plane method.

4 Preliminaries

This section gives some preliminary background definitions and facts.

• In Section 4.1, we introduce notations used across this paper.

• In Section 4.2, we list some useful facts for our later proof.

4.1 Notations

We introduce some notations and definitions we will use throughout this paper.
For a positive integer n, we use [n] to denote the set {1, 2, · · · , n}. For a vector x, we use ‖x‖2

to denote its `2 norm. For a matrix A, we use ‖A‖ to denote its spectral norm. For a square matrix
A, we use tr[A] to denote its trace. For a square and full rank matrix A, we use A−1 to denote its
inverse.

We say a symmetric matrix A ∈ Rn×n is positive semi-definite (PSD, denoted as A � 0) if for
any vector x ∈ Rn, x>Ax ≥ 0. We say a symmetric matrix A ∈ Rn×n is positive definite (PD,
denoted as A � 0) if for any vector x ∈ Rn, x>Ax > 0.

For a real positive semi-definite matrix A, we define its square root A1/2 to be the unique positive
semi-definite matrix such that (A1/2)>A1/2 = A.

For two conforming matrices A and B, we have tr[AB] = tr[BA].
For a real symmetric matrix A, we use λmax(A) to denote its largest eigenvalue and λmin(A) to

denote its smallest eigenvalue.
We define Tmat(a, b, c) to be the time of multiplying an a× b matrix with another b× c matrix.

Note that Tmat(a, b, c) = O(Tmat(a, c, b)) = O(Tmat(b, a, c)).

4.2 Useful Facts

We list and prove some useful facts regarding matrices.

Fact 4.1. For any PSD matrix Z ∈ Rd×d, we have tr[Z1/2] ≤
√
d · tr[Z].

Proof. Note that for any d × d positive semi-definite matrix Z � 0, tr[Z1/2] ≤
√
d · tr[Z] due to

Cauchy-Schwartz inequality applied to the non-negative spectrum of Z1/2.

Fact 4.2 (matrix Woodbury identity, [Woo49, Woo50]). For matrices M ∈ Rn×n, U ∈ Rn×d,
C ∈ Rd×d, V ∈ Rd×n,

(M + UCV)−1 = M−1 −M−1U(C−1 + VM−1U)−1VM−1.

Fact 4.3. Let A and B denote two diagonal matrices in Rd×d. Suppose ∀i 6= j ∈ [n], we have
βi − αi = βj − αj, and let γ = βi − αi. We have

tr[A−1 −B−1] = γ · tr[A−1B−1].

11

Proof. We have

tr[A−1 −B−1] =

k∑
i=1

1

αi
− 1

βi

=
k∑
i=1

βi − αi
αiβi

= γ
k∑
i=1

1

αiβi

= γ · tr[A−1B−1]

Thus, we complete the proof.

Fact 4.4 (Inequality for two monotone sequences). Suppose a1 ≥ a2 ≥ · · · ≥ an ≥ 0, b1 ≥ · · · ≥
bn ≥ 0, then we have

n∑
i=1

aibn−i ≤
1

n

n∑
i=1

ai

n∑
j=1

bj

5 Data Structures

In this section, we give an overview of the data structures we will be using. Specifically, we implement
the key Min-IP data structure via furthest-neighbor search.

• In Section 5.1, we give an exact implementation of Min-IP via Voronoi diagram.

• In Section 5.2, we discuss randomized approximate furthest-neighbor search data structure.

• In Section 5.3, we implement approximate Min-IP via approximate furthest-neighbor search.

• In Section 5.4, we show how to transform a non-unit vector into unit through padding extra
dimensions.

• In Section 5.5, we illustrate how to handle adaptive adversaries in our data structure.

• In Section 5.6, we generalize our data structure to handle complex vectors.

5.1 Exact Min-IP

In this section, we implement exact Min-IP data structure via Voronoi diagram, with a fast query
and update time in the expense of exponential preprocessing time.

Definition 5.1 (Furthest-Neighbor (FN)). Given an n-point dataset P ⊂ Sd−1 on the sphere, the
goal of the Furthest-Neighbor (FN) problem is to build a data structure that, given a query q ∈ Sd−1,
retrieve the solution of arg maxp∈P ‖p− q‖2.

Definition 5.2 (Min-IP). Given an n-point dataset P ⊂ Sd−1 on the sphere, the goal of the
Minimum Inner Product Search (Min-IP) is to build a data structure that, given a query q ∈ Sd−1,
retrieve the solution of arg minp∈P 〈p, q〉.

12

For any two points x, y with ‖x‖2 = ‖y‖2 = 1, we have ‖x− y‖22 = 2 − 2〈x, y〉. Thus, Min-IP (
Definition 5.2) is equivalent to FN (Definition 5.1).

Inspired by [VKSdBO00], we have the following Theorem.

Theorem 5.3. The Min-IP (Definition 5.2) could be solved by a data-structure in query time
O(d log n) and space O(nd/2) with preprocessing time O(n log n+nd/2). Moreover, the data-structure
support deletion and insertion of new data vector in O(d log n) time.

Proof. From [VKSdBO00], we know that we could solve FN (Definition 5.1) with furthest-point
Voronoi diagram in query time O(d log n), space O(nd/2) and preprocessing time O(n log n+ nd/2).
As the solution of FN is also the solution of Min-IP. We finish the proof.

5.2 Approximate Furthest-Neighbor

In this section, we implement approximateMin-IP via AFN data structure introduced by Indyk [Ind03].
It has slightly slower query time compared to Voronoi diagram, but the preprocessing does not suffer
from curse of dimensionality.

Definition 5.4 (Approximate Furthest-Neighbor (AFN)). Let c > 1 and r ∈ (0, 2). Given an n-
point dataset P ⊂ Sd−1 on the sphere, the goal of the (c, r)-Approximate Furthest-Neighbor (AFN)
problem is to build a data structure that, given a query q ∈ Sd−1 with the promise that there exists
a point p ∈ P with ‖p− q‖2 ≥ r reports a point p′ ∈ P with distance ‖p− q‖2 ≥ r/c.

Definition 5.5 (Approximate Min-IP). Let c ∈ (0, 1) and τ ∈ (0, 1). Given an n-point dataset
P ⊂ Sd−1 on the sphere, the goal of the (c, τ)-Minimum Inner Product Search (Min-IP) is to build
a data structure that, given a query q ∈ Sd−1 with the promise that there exists a point p ∈ P with
〈p, q〉 ≤ τ , it reports a point p′ ∈ P with similarity 〈p′, q〉 ≤ τ/c.

Theorem 5.6 ([Ind03]). Let c > 1 and r ∈ (0, 2). For any δ > 0, the (c+ δ, r)-AFN could be solved
by a data structure in query time O(n1/c2d log n log2

1+δ d)2 and space O(n1+1/c2d log n log2
1+δ d) with

preprocessing time O(n1+1/c2d log n log2
1+δ d). Moreover, the data structure supports deletion and

insertion of new point in O(n1/c2d log n log2
1+δ d) time. For any fixed query, the success probability

is 0.99.3

5.3 Min-IP via AFN

For any two points x, y with ‖x‖2 = ‖y‖2 = 1, we have ‖x − y‖22 = 2 − 2〈x, y〉. This implies that
r2 = 2− 2τ . Further,for any δ > 0, if we have a data structure for (c+ δ, r)-AFN , it automatically
becomes a data structure for (c, τ)-Min-IP with parameters τ = 1 − 0.5r2 and c = 1−0.5r2

1−0.5r2/(c+δ)2
.

This implies that

(c+ δ)2 =
cr2

2c− 2 + r2

=
c(2− 2τ)

2c− 2 + (2− 2τ)

2The actual dependence is O(n1/c2d log1+
1−c2

2 n log1+δ d log log1+δ d). In [PSSS15], they improved a logarithmic
factor by modifying the data structure of [Ind03]. In our applications, we do not care about log factors, thus we
simplify the bound.

3In our applications, we will use data structure with boosted success probability (see page 4 of [Ind03]). We will
show how to perform such boosting in Section 5.5.

13

=
c(1− τ)

c− τ
(4)

Next, we show that c(1−τ)
c−τ is increasing as τ increase and c(1−τ)

c−τ > 8 if τ ∈ (7c
8−c , c).

Lemma 5.7. Let c ∈ (0, 1) and τ ∈ (0, 1), we show that function f(c, τ) := c(1−τ)
c−τ is decreasing as

c increase and increasing as τ increase.

Proof. We take the derivative of f(c, τ) over c and get

∂

∂c
f(c, τ) =

(τ − 1)τ

(c− τ)2
< 0

where the second step follows from c > τ and τ < 1.
Therefore, f(c, τ) := c(1−τ)

c−τ is decreasing as c increase.
We take the derivative of f(c, τ) over τ and get

∂

∂τ
f(c, τ) =

c(τ2 − 2cτ + c)

(c− τ)2

=
c((τ − c)τ + c(1− τ))

(c− τ)2
> 0

where the second step follows from c > τ and τ < 1.
Therefore, f(c, τ) := c(1−τ)

c−τ is increasing as τ increase.

Next, we show the query time, space and preprocessing time to solve (c, τ)-Min-IP using Theo-
rem 5.6.

Corollary 5.8. Let τ ∈ (0, 1). If we set c ∈ (τ, 8τ
τ+7), then the (c, τ)-Min-IP on a unit sphere

Sd−1 could be solved in query time O(n0.5d log3 n) and space O(n1.5d log3 n) with preprocessing time
O(n1.5d log3 n).

Proof. We know that if we let δ = c and have a data structure for (2c, r)-AFN , it automatically
becomes a data structure for (c, τ)-Min-IP with parameters τ = 1 − 0.5r2 and c = 1−0.5r2

1−0.5r2/4c2
.

Moreover, using Eq.(4), we have

c2 =
c(1− τ)

4(c− τ)

=
c(1− τ)

4(c− τ)
(5)

if τ ∈ (0, 1) and c ∈ (τ, 8τ
τ+7), we have

c2 =
c(1− τ)

4(c− τ)

>
8τ

τ + 7
· 1− τ

4(8τ
τ+7 − τ)

=
8τ

τ + 7
· (1− τ)(τ + 7)

4(8τ − τ2 − 7τ)
= 2

14

Next, using Theorem 5.6, we show that the (2c, r)-AFN could be solved with query time
O(n1/c2d log n log2

1+c d), proprocessing time/space O(n1+1/c2d log n log2
1+c d) .

Combining the Theorem 5.6 with c2 > 2, we rewrite n1/c2d log n log2
1+c d as

n1/c2d log n log2
1+c d < n1/c2d log n log2 d < n0.5d log n log2 d ≤ n0.5d log3 n

where the first step follows from c > 1 and the second step follows from c2 > 2, the third step
follows from n ≥ d.

In this way, we could rewrite query time as O(n0.5d log3 n). Similarly, we could rewrite both
preprocessing time and space as O(n1.5d log3 n). Thus, we finish the proof.

Corollary 5.9. Let τ ∈ (0, 1). If we set c ∈ (τ, 40τ
τ+39), then the (c, τ)-Min-IP on a unit sphere

Sd−1 could be solved in query time O(n0.1d log3 n) and space O(n1.1d log3 n) with preprocessing time
O(n1.1d log3 n).

Proof. From Eq. (5), we know that

c2 =
c(1− τ)

4(c− τ)

if τ ∈ (0, 1) and c ∈ (τ, 40τ
τ+39), we have

c2 =
c(1− τ)

4(c− τ)

>
40τ

τ + 39
· 1− τ

4(40τ
τ+39 − τ)

=
40τ

τ + 39
· (1− τ)(τ + 39)

4(40τ − τ2 − 39τ)
= 10

where the second step follows from Lemma 5.7 that c(1−τ)
c−τ is decreasing as c increase, the third and

forth step are reorgnizations.
Next, using Theorem 5.6, we show that the (2c, r)-AFN could be solved with query time

O(n1/c2d log n log2
1+c d), proprocessing time/space O(n1+1/c2d log n log2

1+c d) .
Combining the Theorem 5.6 with c2 > 10, we rewrite n1/c2d log n log2

1+c d as

n1/c2d log n log2
1+c d < n1/c2d log n log2 d < n0.1d log n log2 d ≤ n0.1d log3 n

where the first step follows from c > 1 and the second step follows from c2 > 10, the third step
follows from n ≥ d.

In this way, we could rewrite query time as O(n0.1d log3 n). Similarly, we could rewrite both
preprocessing time and space as O(n1.1d log3 n). Thus, we finish the proof.

Corollary 5.10. Let τ ∈ (0, 1). If we set c ∈ (τ, 400τ
τ+399), then the (c, τ)-Min-IP on a unit sphere

Sd−1 could be solved in query time O(n0.01d log3 n) and space O(n1.01d log3 n) with preprocessing
time O(n1.01d log3 n).

Proof. From Eq. (5), we know that

c2 =
c(1− τ)

4(c− τ)

15

if τ ∈ (0, 1) and c ∈ (τ, 400τ
τ+399), we have

c2 =
c(1− τ)

4(c− τ)

>
400τ

τ + 399
· 1− τ

4(400τ
τ+399 − τ)

=
400τ

τ + 399
· (1− τ)(τ + 399)

4(400τ − τ2 − 399τ)
= 100

where the second step follows from Lemma 5.7 that c(1−τ)
c−τ is decreasing as c increase, the third and

forth step are reorgnizations.
Next, using Theorem 5.6, we show that the (2c, r)-AFN could be solved with query time

O(n1/c2d log n log2
1+c d), preprocessing time/space O(n1+1/c2d log n log2

1+c d) .
Combining the Theorem 5.6 with c2 > 100, we rewrite n1/c2d log n log2

1+c d as

n1/c2d log n log2
1+c d < n1/c2d log n log2 d < n0.01d log n log2 d ≤ n0.01d log3 n

where the first step follows from c > 1 and the second step follows from c2 > 100, the third step
follows from n ≥ d.

In this way, we could rewrite query time as O(n0.01d log3 n). Similarly, we could rewrite both
preprocessing time and space as O(n1.01d log3 n). Thus, we finish the proof.

5.4 Transformations

In most applications, query and data vectors are usually not unit vectors. Therefore, we need
to transform them into unit vectors without breaking the Min-IP solution. We propose a pair of
asymmetric transformations as below:

Definition 5.11. Given the query set X ⊂ Rd and a dataset Y ⊂ Rd, we performs the following
transformations for any x ∈ X and y ∈ Y .

ϕ(x) =

[
x>

DX
0

√
1− ‖x‖

2
2

D2
X

]>
, ψ(y) =

[
y>

DY

√
1− ‖y‖

2
2

D2
Y

0

]>
,

where DX is the maximum diameter of X and and DY is the maximum diameter of Y . In this
way, we map x ∈ X and y ∈ Y to unit vectors. Moreover, ‖ϕ(x)− ψ(y)‖22 = 2− 2〈ϕ(x), ψ(y)〉 and
arg maxy∈Y ‖ϕ(x)− ψ(y)‖2 = arg miny∈Y 〈x, y〉.

Remark 5.12. In our later applications, we implicitly assume all points have undergone such
transformations in preprocessing phase. We also remark that in query phase, the set Y consists of
a single query point, it suffices to pick DY as ‖y‖2, in this case, the transformation can be viewed
as normalizing the query vector. If computing the inner product between x and y is required, we
can retrieve the original x and y by its first d dimension, and by storing DX as a variable in the
data structure.

5.5 Adaptive Queries

The queries at each step for Min-IP are not independent. Therefore, we could not direct union
bound the failure probability. We propose a quantize method to handle this problem. For each
query q ∈ Rd, we first quantize it into vertex q̂ in the ε-net. Then, we use q̂ as query. Although this

16

would generate an ε additive error, we could bound the failure probability of a series of dependent
queries.

Given a query set Q ⊆ Rd with maximum diameter D and a n-point dataset P ⊂ Rd, the failure
probability of a series of dependent queries from Q ⊂ Rd is equal to the probability that at least
on vertex on the ε-net of Q fails as a query, which is written as nδ̃ · (dDε)d, where δ̃ is the failure
probability of the data structure. We could also reduce the failure probability by repeating the data
structure for l times, which will reduce the total failure probability to nδ̃l · (dDε)d but increase the
query complexity by l times.

Remark 5.13. It is standard to reduce the constant failure probability to δ̃ by repeating the data-
structure log(1/δ̃) copies. In addition, we also need to deal with adaptive query, therefore we need
to choose δ̃ = δ/nd to sufficiently to union all the points in the ε-net. Thus we blow up the time by
an extra d log(n/δ) factor with paying δ failure probability (after union bound over all iterations).

We also remark that by picking ε = τ
c and using d log(n/δ) copies of independent data structures,

we obtain a collection of data structures with success probability at least 1 − δ and the guarantee
of inner product transforms from 〈p, q〉 ≤ τ

c to 〈p′, q〉 ≤ 2 · τc .

5.6 Complex Vectors

In our problem, the queries and data vectors could be complex vectors. Therefore, we need to adapt
the data structures for complex-valued inputs. We achieve this through transforming a complex
vector into a real vector with twice the length, where the first half of the values are real part and
the second half of are complex part. This is a standard practice to extend data structures for
complex-valued vectors.

6 One-Sided Kadison-Singer via Furthest-Neighbor Search

In this section, we provide efficient data structure for one-sided Kadison-Singer problem.

• In Section 6.1, we state some useful facts and lemmas.

• In Section 6.2, we formally define the one-sided Kadison-Singer problem.

• In Section 6.3, we prove the correctness of a greedy process with an approximate guarantee.

• In Section 6.4, we give an overview of algorithms and compare their running time.

• In Section 6.5, we provide an analysis for a straightforward implementation of the greedy
process.

• In Section 6.6, we give a slightly better implementation.

• In Section 6.7, we introduce Voronoi diagram with fast query time but suffers from curse of
dimensionality.

• In Section 6.8, we use approximate Min-IP data structure to achieve both fast preprocessing
and query time.

17

6.1 Useful Facts

In this section, we introduce some useful facts and lemmas to facilitate the proof of the core ap-
proximate greedy lemma.

Definition 6.1 (Upper barrier potential). Let T denote a square matrix. For any a > ‖T‖, we
define potential function Φa(T) as follows

Φa(T) := tr[(aI − T)−1].

This potential function has been studied and popularized in [Sri10, BSS12]. We state a tool
from previous [Sri10](see Lemma 3.4), for the completeness, we still provide a proof.

Lemma 6.2. For any a, δ and T ∈ Cd×d satisfying ‖T‖ < a, and for any t ≥ 0, if

v>((a+ δ)I − T)−2v

Φa(T)− Φa+δ(T)
+ v>((a+ δ)I − T)−1v ≤ 1

t
,

Then

• Φa+δ(T + t · vv>) ≤ Φa(T),

• ‖T + t · vv>‖ < a+ δ.

Proof. Let ũ = a+ δ and

U :=
v>((a+ δ)I − T)−2v

Φa(T)− Φa+δ(T)
+ v>((a+ δ)I − T)−1v.

Part 1. By the Sherman-Morrison formula, we can write the updated potential as:

Φũ(T + tvv>) = tr[(ũI − T − tvv>)−1]

= tr[(ũI − T)−1 +
t · (ũI − T)−1vv>(ũI − T)−1

1− tv>(ṽI − T)−1v
]

= tr[(ũI − T)−1] +
t · tr[v>(ũI − T)−1(ũI − T)−1v]

1− t · v>(ũI − T)−1v

= Φũ(T) +
tv>(ũI − T)−2v

1− t · v>(ũI − T)−1v

= Φa(T)− (Φa(T)− Φũ(T)) +
tv>(ũI − T)−2v

1− t · v>(ũI − T)−1v

= Φa(T)− (Φa(T)− Φũ(T)) +
v>(ũI − T)−2v

1/t− v>(ũI − T)−1v

where the second step follows from Sherman-Morrison formula, the third step follows from tr[·] is
linear and tr[XY] = tr[Y X].

Note that U ≤ 1
t , this means that

v>(ũI − T)−2v

1/t− v>(ũI − T)−1v
− (Φa(T)− Φũ(T))

≤ v>(ũI − T)−2v

U − v>(ũI − T)−1v
− (Φa(T)− Φũ(T))

18

=
v>(ũI − T)−2v

v>(ũI−T)−2v
Φa(T)−Φũ(T)

+ v>(ũI − T)−1v − v>(ũI − T)−1v
− (Φa(T)− Φũ(T))

= 0

This shows that Φũ(T + tvv>) ≤ Φa(T).
Part 2. For ‖T + tvv>‖, suppose this is not true, then there exists some t′ > 0 such that

‖T+t′vv>‖ = ũ. In this case, at least one eigenvalue of ũ−(T+t′vv>) is 0, this means Φũ(T+tvv>)
will be infinite. However, this is not possible, since Φũ(T) is finite. The term

v>(ũI − T)−2v

1/t− v>(ũI − T)−1v

is also finite due to the positive definiteness of matrix (ũI − T)−2 and Φa(T) > Φũ(T). Therefore,
U > v>(ũI − T)−1v, and the term 1/t− v>(ũI − T)−1v is nonzero.

This establishes the fact that ‖T + tvv>‖ < a+ δ.

6.2 Problem Setup

We consider a version of Weaver’s discrepancy theoretical formulation of Kadison-Singer problem,
introduced in [Wea13].

Question 6.3. Does there exist a constant N and r, such that if {v1, . . . , vm} is a finite sequence
of vectors in Cd satisfying ‖vi‖2 = 1√

N
, ∀i ∈ [m] and

m∑
i=1

|〈u, vi〉|2 = 1

for all unit vector u, then the index set {1, . . . ,m} can be partitioned into subsets S1, . . . , Sr such
that ∑

i∈Sj

|〈u, vi〉|2 ≤ 1− 1√
N

holds for all unit vector u and all j = 1, . . . r.

It is not clear whether using r > 2 gives us any extra power, therefore we will focus our discussion
on the case r = 2. This reduces the problem into whether it is possible to find a subset S satisfying

1√
N
≤
∑

i∈S |〈u, vi〉|2 ≤ 1 − 1√
N

for all unit vectors. Note that we require the subset to both have
an upper bound and lower bound, which can be thought as a two-sided bound on set S, and it is
still open whether a polynomial time algorithm exists. Instead, we consider a simplified version,
which can be viewed as a one-sided problem of Kadison-Singer:

Question 6.4. Does there exist a constant N ∈ N, such that if {v1, . . . , vm} is a finite sequence of
vectors in Cd satisfying ‖vi‖ = 1√

N
, ∀i ∈ [m], and

m∑
i=1

|〈u, vi〉|2 = 1

19

for all unit vector u ∈ Cd, then there exists a subset S ⊆ {1, . . . ,m} such that for any q ∈ (0, 1), we
have ∑

i∈S
|〈u, vi〉|2 ≤ q − 1√

N

for all unit vector u ∈ Cd?

In Weaver’s discrepancy theory II, 2013 [Wea13], he presented a polynomial algorithm that has
the following guarantee: ∑

i∈S
|〈u, vi〉|2 ≤

n

m
+O(

1√
N

).

for all unit vector u. Here n := |S|. We will dedicate our efforts to design a faster algorithmic
framework to achieve the same or approximate guarantee as Weaver’s result.

6.3 Approximate Greedy Lemma

In this section, we describe and analyze a high level greedy process to construct the set S with the
guarantee given in [Wea13]. We generalize his analysis by introducing an approximation factor β,
which is particularly valuable when later, we want to use certain approximate data structure to
implement the high-level idea. We start with the main lemma of this section.

Lemma 6.5 (approximate greedy lemma). Let N ∈ R+, if {v1, . . . , vm} is a finite sequence of
vectors in Cd satisfying ‖vi‖2 = 1√

N
,∀i ∈ [m] and

m∑
i=1

|〈u, vi〉|2 = 1

holds for all unit vector u ∈ Cd. Then for any n < m and any unit vector u, we can find a set S
(|S| = n) such that ∑

i∈S
|〈u, vi〉|2 ≤ β · (

n

m
+O(

1√
N

)).

where β ≥ 1.

Proof. Before proceeding to main body of the proof, we observe that for the choice of N , we know
tr[viv

>
i] = ‖vi‖22 = 1

N and
∑m

i=1 viv
>
i = I, thus we have m = dN .

We define the following sequence of numbers

ai =
1√
N

+ (1 +
1√
N − 1

)
i

m
,∀i ∈ {0, 1, · · · , n}.

Let Sj to be the set we have at round t, we also define the matrix Tj as

Tj :=
1

β
·
∑
i∈Sj

viv
>
i

We are going to find a set of indices i1, . . . , in such that the following two things hold

20

• ‖Tj‖ < aj ,

• Φa0(T0) ≥ . . . ≥ Φan(Tn).

Assume the above two conditions hold, then we will have∥∥∥∥∥∑
i∈Sn

viv
>
i

∥∥∥∥∥ = β · ‖Tn‖

< β · an

= β · (1√
N

+ (1 +
1√
N − 1

)
n

m
)

≤ β · (n
m

+O(
1√
N

)).

Further, since ∑
i∈Sn

〈u, vi〉2 =
∑
i∈Sn

u>(viv
>
i)u

= u>(
∑
i∈Sn

viv
>
i)u

≤

∥∥∥∥∥∑
i∈Sn

viv
>
i

∥∥∥∥∥ .
We conclude that a bound on the spectral norm of βT gives a bound on our desired objective.

Therefore, it suffices to show how to construct Sj that satisfies above two conditions. We will
prove via induction.

Base case. For base case, consider j = 0, note a0 = 1√
N
> 0 and T0 = 0, so ‖T0‖ < a0. For

potential, we compute Φa0(T0):

Φa0(T0) = tr[(
1√
N
I)−1] = d

√
N.

Inductive hypothesis. For inductive hypothesis, we suppose for some j < n, we have ‖Tj‖ < aj
and Φa0(T0) ≥ . . . ≥ Φaj (Tj).

Inductive step. We prove for j+ 1. Suppose v1, . . . vj have been chose and we use λ1 ≤ · · · ≤ λd
be the eigenvalue of Tj . Then the eigenvalues of I−Tj are 1−λ1 ≥ · · · ≥ 1−λd and the eigenvalues
of (aj+1I−Tj)−1 are 1

aj+1−λ1 ≤ · · · ≤
1

aj+1−λd . Note that Tj is a complex symmetric matrix, we can
express it using its eigen-decomposition: Tj = Q−1

j DjQj , where Dj ∈ Cd×d is a diagonal matrix,
whose i-th entry is λi.

Then we have

tr[(aj+1I − Tj)−1(I − βTj)] = tr[Q−1
j (aj+1I −Dj)

−1(I − βDj)Qj]

= tr[(aj+1I −Dj)
−1(I − βDj)]

=

d∑
l=1

1

aj+1 − λl
(1− βλl)

21

≤ 1

d

d∑
l=1

1

aj+1 − λl

d∑
l=1

(1− βλl)

=
1

d
· tr[(aj+1I − Tj)−1] · tr[I − βTj]

≤ 1

d
· tr[(ajI − Tj)−1] · tr[I − βTj]

=
1

d
Φaj (Tj) · tr[I − βTj]

≤ 1

d
Φa0(T0) · tr[I − βTj]

=
√
N · tr[I − βTj], (6)

where the fourth step follows from sorting inequality 4.4, the sixth step follows from aj+1 > aj , the
eighth step follows from the inductive hypothesis.

Consequently, we have

Φaj (Tj)− Φaj+1(Tj) = tr[(ajI − Tj)−1 − (aj+1I − Tj)−1]

= tr[Q−1
j (ajI −Dj)

−1Qj −Q−1
j (aj+1I −Dj)

−1Qj]

= tr[(ajI −Dj)
−1 − (aj+1I −Dj)

−1]

= (aj+1 − aj)tr[(ajI −Dj)
−1(aj+1I −Dj)

−1]

= (1 +
1√
N − 1

)
1

m
· tr[(ajI − Tj)−1(aj+1I − Tj)−1]

≥ (1 +
1√
N − 1

)
1

m
· tr[(aj+1I − Tj)−2] (7)

where the forth step follows from Fact 4.3, and the fifth step follows from aj+1−aj = 1
m(1+ 1√

N−1
).

The last step follows from
1

(aj+1 − λl)2
≤ 1

(aj − λl)(aj+1 − λl)
.

Furthermore, we have

tr[(aj+1I − Tj)−2(I − βTj)] =

d∑
l=1

1

(aj+1 − λl)2
(1− βλl)

≤ 1

d

d∑
l=1

1

(aj+1 − λl)2

d∑
l=1

(1− βλl)

=
1

d
tr[(aj+1I − Tj)−2] · tr[I − βTj]. (8)

Combining Eq. (7) and (8), we get

tr[(aj+1I − Tj)−2(I − βTj)]
Φaj (Tj)− Φaj+1(Tj)

≤ m

d

√
N − 1√
N

· tr[I − βTj]

= N(1− 1√
N

) · tr[I − βTj], (9)

where the last step follows from m/d = N .

22

Denote S = [m] \ S, then we have

∑
i∈S

(
v>i (aj+1I − Tj)−2vi
Φa(Tj)− Φaj+1(Tj)

+ v>i (aj+1I − Tj)−1vi

)

=
tr[(aj+1I − Tj)−2(I − βTj)]

Φaj (Tj)− Φaj+1(Tj)
+ tr[(aj+1I − Tj)−1(I − βTj)]

≤ N(1− 1√
N

) · tr[I − βTj] +
√
N · tr[I − βTj]

= N · tr[I − βTj]
= m− j.

The first step follows from
∑

i∈S′ viv
>
i = I − βTj ∈ Cd×d, the second step follows from Eq. (6)

and (9). The last step follows from tr[βTj] = j/N and m = Nd. Thus we conclude there exists an
element of S satisfying

v>i?(aj+1I − Tj)−2vi?

Φaj (Tj)− Φaj+1(Tj)
+ v>i?(aj+1I − Tj)vi? ≤ 1 ≤ β.

Thus choosing Sj+1 = Sj ∪ {i?} ⊆ [m], and using Lemma 6.2, we conclude ‖Tj+1‖ < aj+1 and
Φaj+1(Tj+1) ≤ Φaj (Tj).

Remark 6.6. If we choose β = 1, then the above theorem reduces to the original version proved
by Weaver [Wea13], which corresponds to the exact algorithms. In our generalized version, we show
that if we scale down each copy of viv>i by a factor of β, then the final bound is just worse by a
factor of β, compared to the bound obtained by Weaver. This means that at each step of algorithm,
we can tolerate for a vector with only approximately small inner products, as long as we know the
approximation ratio, we can scale matrix T down and pay back the factor at the final bound. This
inspires the use of data structure that outputs approximate solution.

6.4 Algorithm Overviews

In this section, we implement and discuss various exact and approximate algorithms for Lemma 6.5.
We first list a table comparing and contrasting various algorithms. Note that the number of it-
erations for all algorithms are n. The last two rows represent the same algorithms with different
approximation guarantees.

Algorithm Prep. Cost per Iter. Total Time Comments
Alg. 1 0 mdω n ·mdω Straightforward Alg. for [Wea13]
Alg. 2 0 mdω−1 n ·mdω−1 Smarter Alg. for [Wea13]
Alg. 3 md2/2 dω n · dω +md2/2 Our exact algorithm
Alg. 4 m1.5d4 m0.5d4 n ·m0.5d4 +m1.5d4 Ours with high accuracy
Alg. 4 m1.01d4 m0.01d4 n ·m0.01d4 +m1.01d4 Ours with low accuracy

Table 3: Comparison of different algorithms, for simplicity of presentation assumem� d and ignore
Õ. All algorithms require n iterations. Prep. denote the preprocessing time of data structures.
Full version of Table 1.

23

Algorithm 1 Vanilla greedy algorithm derived from [Wea13], it takes nm · Tmat(d, d, d) time.

1: procedure VanillaGreedy({v1, . . . , vm}, N, n) . Theorem 6.7
2: T0 ← 0d×d
3: S ← ∅
4: for j = 0→ n do
5: aj = 1√

N
+ (1 + 1√

N−1
) jm

6: end for
7: for j = 0→ n do
8: for i ∈ [m] \ S do
9: ci ← (Φaj−1(Tj)− Φaj (Tj))

−1 · v>i (ajI − Tj)−2vi + v>i (ajI − Tj)−1vi . Tmat(d, d, d)
time

10: end for
11: i∗ = arg mini∈[m]\S ci
12: Tj+1 ← Tj + vi∗v

>
i∗

13: S ← S ∪ {i∗}
14: end for
15: return S
16: end procedure

We provide formal correctness and runtime analysis of the four algorithms we presented above.
Note due to Lemma 6.5, the correctness boils down to assert that each algorithm can find a vector
vi such that

v>i (aj+1I − Tj)−2vi
Φaj (Tj)− Φaj+1(Tj)

+ v>i (aj+1I − Tj)vi ≤ 1.

When using approximate algorithm/data structure, we might not find such a vector with the thresh-
old of 1. Fortunately, according to Lemma 6.5, if we can only find a vector with threshold β, we
can obtain a β-approximate solution by scaling down each viv>i by a factor of β.

24

Algorithm 2 Smarter implementation, it takes n · (Tmat(d, d, d) + Tmat(d, d,m) +md) time.

1: procedure ImprovedGreedy({v1, . . . , vm}, N, n) . Theorem 6.8
2: T0 ← 0d×d
3: S ← ∅
4: for j = 0→ n do
5: aj = 1√

N
+ (1 + 1√

N−1
) jm

6: end for
7: for j = 0→ n do
8: Mj ← (ajI − Tj)−1 . Mj ∈ Rd×d, it takes Tmat(d, d, d) time
9: Nj ← (aj−1I − Tj)−1

10: Qj ←Mj · V . Qj ∈ Rd×m, V ∈ Rd×m, it takes Tmat(d, d,m) time
11: for i ∈ [m] \ S do
12: ci ← (tr[Nj]− tr[Mj])

−1 · (Qj,i)>Qj,i + v>i Qj,i . O(d) time, Qj,i here denotes i-th
column of Qj

13: end for
14: i∗ = arg mini∈[m]\S ci
15: Tj+1 ← Tj + vi∗v

>
i∗

16: S ← S ∪ {i∗}
17: end for
18: return S
19: end procedure

25

Algorithm 3 Our Exact Min-IP data structure implementation.
1: data structure VoronoiDiaragm . Theorem 5.3
2: Init(d ∈ N, m ∈ N, Y ⊂ Rd)
3: Insert(x ∈ Rd)
4: Delete(x ∈ Rd)
5: Query(x ∈ Rd)
6: end data structure
7:
8: procedure Exact(d ∈ N, m ∈ N, n ∈ N, V ⊂ Rd) . Theorem 6.9
9: . V := {v1, · · · , vm}

10: T0 ← 0d×d
11: S ← ∅
12: Construct Vvec ⊂ Rd2 . Vvec := {vec(v1v

>
1), · · · , vec(vmv

>
m)}

13: for j = 0→ n do
14: aj = 1√

N
+ (1 + 1√

N−1
) jm

15: end for
16: /*We preprocess v1, · · · vm and build a data-structure . This takes O(m logm+md2/2)
17: VoronoiDiaragm vd
18: vd.Init(d2,m, Vvec)
19: for j = 0→ n do
20: Mj ← (ajI − Tj)−1 . Mj ∈ Rd×d, it takes Tmat(d, d, d) time
21: Nj ← (aj−1I − Tj)−1 . Nj ∈ Rd×d, it takes Tmat(d, d, d) time
22: /*We use data-structure to find i/ . This step takes d2 · logm
23: q ← vec((tr[Nj]− tr[Mj])

−1MjMj +Mj))
24: i∗ ← vd.Query(q)
25: Tj+1 ← Tj + vi∗v

>
i∗

26: S ← S ∪ {i∗}
27: vd.Delete(vec(vi∗v

>
i∗))

28: end for
29: return S
30: end procedure

26

Algorithm 4 Our Approximate Min-IP data structure implementation.
1: data structure DS
2: Init(d ∈ N, m ∈ N, Y ⊂ Rd, c ∈ (0, 1), τ ∈ (0, 1)) . c and τ are Min-IP parameters.
3: Insert(x ∈ Rd)
4: Delete(x ∈ Rd)
5: Query(x ∈ Rd)
6: end data structure
7: procedure Approximate(d ∈ N, m ∈ N, n ∈ N, V ⊂ Rd, c ∈ (0, 1),τ ∈ (0, 1)) . Theorem 6.11
8: T0 ← 0d×d
9: S ← ∅

10: Construct V . V = [v1, v2, · · · , vm]
11: for j = 0→ n do
12: aj = 1√

N
+ (1 + 1√

N−1
) jm

13: end for
14: Y ← [v1v

>
1 , · · · , vmv>m]

15: DS ds
16: ds.Init(d2,m,Y ,c,τ)
17: for j = 0→ n do
18: Mj ← (ajI − Tj)−1 . Mj ∈ Rd×d, it takes Tmat(d, d, d) time
19: Nj ← (aj−1I − Tj)−1 . Nj ∈ Rd×d, it takes Tmat(d, d, d) time
20: q ← vec((tr[Nj]− tr[Mj])

−1MjMj +Mj))
21: i∗ ← ds.Query(q)
22: Tj+1 ← Tj + vi∗v

>
i∗

23: S ← S ∪ {i∗}
24: ds.Delete(vec(vi∗v

>
i∗))

25: end for
26: return S
27: end procedure

27

6.5 An O(nm · Tmat(d, d, d)) Implementation

Note that Algorithm 1 is a straightforward implementation of the process derived from the proof of
Lemma 6.5.

Theorem 6.7. Let N ∈ N+, if {v1, . . . , vm} is a finite sequence of vectors in Cd satisfying ‖vi‖2 =
1√
N
, ∀i ∈ [m] and

∑m
i=1 |〈u, vi〉|2 = 1 holds for all unit vector u ∈ Cd. Then for any n < m, there

exists a deterministic algorithm that takes time O(n ·mTmat(d, d, d)) to find a set S with cardinality
n such that ∑

i∈S
|〈u, vi〉|2 ≤

n

m
+O(

1√
N

),

Proof. The correctness proof is straightforward, since Algorithm 1 implements the greedy process
exactly. To analyze the runtime, note the expensive step is to compute quantity ci at each iteration,
where it involves inverting a d× d matrix, which takes Tmat(d, d, d) time, and compute the quantity
in the form of v>A−1v, which takes O(d2) time. Note that at each round, we need to compute ci
for at most m vectors, and there are n rounds. Thus, the total running time is

O(nm · Tmat(d, d, d)).

6.6 An n · Tmat(d, d,m) Implementation

There’s ample room to optimize the implementation of Algorithm 1, e.g., pre-computing the matrix
(ajI − Tj)

−1 and (aj−1I − Tj)
−1 at each iteration and computing ci in a batched fashion using

matrix multiplication. This reduces the cost per iteration from O(mTmat(d, d, d)) to Tmat(d, d,m),
which is an improvement from O(mdω) to O(mdω−1).

Theorem 6.8. Let N ∈ N+, if {v1, . . . , vm} is a finite sequence of vectors in Cd satisfying ‖vi‖2 =
1√
N
, ∀i ∈ [m] and

∑m
i=1 |〈u, vi〉|2 = 1 holds for all unit vector u ∈ Cd. Then for any n < m, there

exists a deterministic algorithm that takes time O(n · Tmat(d, d,m)) to find a set S with cardinality
n such that ∑

i∈S
|〈u, vi〉|2 ≤

n

m
+O(

1√
N

),

Proof. Note that by definition, we have (tr[Nj]− tr[Mj])
−1 = (Φaj−1(Tj)− Φaj (Tj))

−1 and

Q>j,iQj,i = (Mj · V)>i (Mj · V)i

= v>i M
>
j Mjvi

= v>i (ajI − Tj)−2vi,

where the second step follows from each column of V is just vi, and the last step comes from the
fact that Mj is positive definite. Similarly, v>i Qj,i = v>i (ajI − Tj)−1vi. This proves the correctness
of the algorithm. For the runtime, note at each iteration, we need to

• Compute the inverse of d× d matrix, this takes Tmat(d, d, d) time;

• Compute the product of one d × d matrix (Mj) and one d × m matrix (V), this takes
Tmat(d, d,m) time;

28

• Compute trace of d × d matrix and inner product between two length d vectors, this takes
O(d) time.

Thus, the cost per iteration is dominated by Tmat(d, d,m), and the overall running time is

n · Tmat(d, d,m).

6.7 Exact Data Structure: Curse of Dimensionality and Fast Query

We observe the redundancy in both Algorithm 1 and 2: in order to find the vector with the smallest
ci, we have to compute this value for all candidate vectors. A natural idea is to design a data
structure with the following properties:

• After preprocessing, answers the query of finding minimum inner product of the type (3) very
efficiently;

• Supporting fast deletion, since we need to remove one vector after adding to set S.

We will make use of Min-IP data structure implemented via exact furthest-neighbor search to realize
these requirements.

Theorem 6.9 (Formal version of Theorem 2.1). Let N ∈ N+, if {v1, . . . , vm} is a finite sequence
of vectors in Cd satisfying ‖vi‖2 = 1√

N
, ∀i ∈ [m] and

∑m
i=1 |〈u, vi〉|2 = 1 holds for all unit vector

u ∈ Cd. Then for any n < m, there exists a deterministic algorithm that takes time Tinit +n · Tquery

to find a set S with cardinality n such that∑
i∈S
|〈u, vi〉|2 ≤

n

m
+O(

1√
N

),

where Tinit = O(m logm+md2/2), Tquery = O(dω + d2 · logm). Thus, the total running time is

O(m logm+md2/2 + n · (dω + d2 logm)).

Proof. We first illustrate the general idea of Algorithm 3, which makes use of the fact that the LHS
of Eq. (2) and Eq. (3). Another equivalence we will establish is between the inner product of two
matrices, defined as 〈A,B〉 = tr[A>B] is equivalent to the inner product after their vectorization.
Suppose A,B ∈ Cd×d, then

tr[A>B] =

d∑
i=1

d∑
j=1

Ai,jBi,j

=

d2∑
i=1

vec(A)ivec(B)i

= 〈vec(A), vec(B)〉.

This is what we implement in Algorithm 3. We first compute all the outer product matrices viv>i then
vectorize them, and preprocess them into an exact data structure. At each iteration, we compute
matrices Nj and Mj as in Algorithm 2, then vectorize the matrix (tr[Nj] − tr[Mj])

−1MjMj + Mj

29

and query the data structure to find the index i∗ that gives the smallest inner product. Finally, we
need to delete the point vec(vi∗v

>
i∗) from the data structure. The correctness follows naturally from

proceeding discussion.
For the running time, as in Theorem 5.3, preprocessingm data points of d2 takes time O(md2/2+

m logm). At each iteration, we need to compute the following:

• Compute inverse of d× d matrix, which takes Tmat(d, d, d) time;

• Compute the vectorization of d× d matrix, which takes O(d2) time;

• Query the data structure, which takes O(d2 logm) time;

• Remove the point vec(vi∗v
>
i∗) from the data structure, which takes O(d2 logm) time.

Thus, the overall cost per iteration is Tmat(d, d, d) +O(d2 logm), and the total running time is

O(md2/2 +m logm+ n · (Tmat(d, d, d) + d2 logm)).

Remark 6.10. The exact data structure via Voronoi diagram suffers from the curse of dimension-
ality due to its exponential dependence on dimension d in preprocessing phase. Though not feasible
in general choices of d, such a framework of using data structure to preprocess all outer product
matrices into points and use it for fast query is of particular interest. We will develop approximate
regime that uses data structure with much faster preprocessing time but can answer query with
approximate solution.

6.8 Approximate Data Structure: Fast Preprocessing and Approximate Query

In order to get rid of the curse of dimensionality incurred in exact data structure, we utilize approxi-
mate Min-IP data structure implemented via approximate furthest-neighbor search (AFN). Roughly
speaking, such data structure enables fast preprocessing time and answers query with approximate
guarantee. This incurs a factor on the final bound of S.

Theorem 6.11 (Formal version of Theorem 2.2). Let τ, c, δ ∈ (0, 1) and N ∈ N+, if {v1, . . . , vm}
is a finite sequence of vectors in Cd satisfying ‖vi‖2 = 1√

N
,∀i ∈ [m] and

∑m
i=1 |〈u, vi〉|2 = 1 holds

for all unit vector u ∈ Cd. Then for any n < m and unit vector u ∈ Cd, there exists a randomized
algorithm that takes time T to find a set S (|S| = n) such that with probability at least 1− δ,∑

i∈S
|〈u, vi〉|2 ≤

2

c
· (n
m

+O(
1√
N

)).

Further, we have

• If c ∈ (τ, 8τ
7+τ), then T = O(m1.5d4 log3m log(m/δ) + n

√
md4 log3m log(m/δ));

• If c ∈ (τ, 400τ
399+τ), then T = O(m1.01d4 log3m log(m/δ) + nm0.01d4 log3m log(m/δ)).

Proof. Note that Algorithm 4 is similar to Algorithm 3 except using an approximate data structure.
The major difference is the extra parameters τ and c, one can interpret them as tuning parameters
for approximation. Unlike exact data structure such as Voronoi diagram, the AFN data structure
can only deal with the inner product bounded by τ < 1, so we need to scale our query point by τ .

30

As promised by the data structure, it will output an index i∗ such that Eq. (3) is at most τ
c , this

means

〈vi∗v>i∗ , τ ·
(aj+1I − T)−2

Φaj (T)− Φaj+1(T)
+ (aj+1I − T)−1〉 ≤ τ

c

⇒ 〈vi∗v>i∗ ,
(aj+1I − T)−2

Φaj (T)− Φaj+1(T)
+ (aj+1I − T)−1〉 ≤ 1

c
.

i.e., we obtain an index with 1
c approximation guarantee. As we showed in Theorem 6.5, if we

proceed with adding c copies of vi∗v>i∗ , we will end up with the following guarantee:∥∥∥∥∥∑
i∈S

viv
>
i

∥∥∥∥∥ ≤ 1

c
· (n
m

+O(
1√
N

)).

It remains to show we can have a data structure with such guarantee, we shall make use of Theo-
rem 5.6 combined with the transformation illustrated in 5.11, we complete the proof of correctness
of the data structure.

Now, we prove the correctness of the running time.
By Corollary 5.8, if we pick c ∈ (τ, 8τ

7+τ), then it takes O(m1.5d2 log3m) time to preprocess and
the query time is O(

√
md2 log3m).

By Corollary 5.10, if we pick c ∈ (τ, 400τ
399+τ), then it takes O(m1.01d2 log3m) time to preprocess

and the query time is O(m0.01d2 log3m).
Finally, we need to use O(d2 log(m/δ)) independent Min-IP data structures, and this incurs an

additive τ
c to the guarantee of inner product, which means we need to blow up the runtime involving

preprocessing and query of Min-IP data structure by a factor O(d2 log(m/δ)), and the quality of
approximation becomes 2

c , with a success probability at least 1− δ.
This completes the proof.

Remark 6.12. In this approximate result, we introduce extra parameters τ and c, note that by
the range of c, as long as τ < 1, we must have c < 1. Therefore, we would like to pick c close to
1. On the other hand, compare the range for two kinds of preprocessing/query time, we note that
400τ

399+τ <
8τ

7+τ . This means to achieve a better running time, we have to make c smaller and therefore
the approximation ratio worse.

7 Experimental Design via Furthest-Neighbor Search

In this section, we consider the rounding up task for experimental design problem posed in [AZLSW20].

• In Section 7.1, we introduce definitions and formally state the problem.

• In Section 7.2, we state some useful facts and tools for later proofs.

• In Section 7.3, we present our algorithm with Min-IP data structure.

• In Section 7.4, we prove an approximate regret lemma, which will provide a lower bound on
the eigenvalue.

• In Section 7.5, we state the lemma that justifies the correctness of our algorithm.

• In Section 7.6, we prove the minimum inner product part of swapping algorithm.

31

• In Section 7.7, we prove the maximum inner product part of swapping algorithm.

• In Section 7.8, we discuss the implication of the swapping lemma and guide our algorithm
design.

• In Section 7.9, we prove the main result of this section.

7.1 Definition

Definition 7.1. Let ∆d×d be the class of matrices defined as

∆d×d := {A ∈ Rd×d : A � 0, tr[A] = 1}.

Definition 7.2. Let ψ : Rd×d → R be defined as

ψ(A) = −2tr[A1/2],

where A ∈ Rd×d is a positive semi-definite matrix.

Definition 7.3. We define the Bregman divergence function associated with ψ, ∆ψ : Rd×d×Rd×d →
R as

∆ψ(A,B) = ψ(B)− ψ(A)− 〈∇ψ(A), B −A〉.

Definition 7.4. We define the mirror descent matrices Ãt ∈ Rd×d and At ∈ Rd×d as follows:

Ãt := arg min
A�0
{∆ψ(At−1, A) + α〈Ft−1, A〉},

At := arg min
A∈∆d×d

∆ψ(Ãt, A).

Definition 7.5. We define a sequence of matrices A0, A1, . . . ∈ Rd×d as follows:

A0 := (c0I + αZ0)−2,

where c0 ∈ R, Z0 ∈ Rd×d is symmetric and A0 � 0. We also define At as

At := (ctI + αZ0 + α
t−1∑
l=0

Fl)
−2,

where ct ∈ R is the unique constant such that At � 0 and tr[At] = 1.

Note we give two alternative definitions of matrix At, as shown in Claim 7.8, these two definitions
are equivalent.

Finally, we formally define the rounding up problem for experimental design.

Question 7.6. Let π ∈ [0, 1]m with ‖π‖1 ≤ n and
∑m

i=1 πixix
>
i = Id. Let γ ≥ 3 and ε ∈ (0, 1

γ].
Does there exist a subset S ⊂ [m] with |S| ≤ n such that

λmin

(∑
i∈S

xix
>
i

)
≥ 1− γ · ε?

32

7.2 Useful Facts from Previous Work

In this section, we list the facts and tools that will be useful for our proof. For the complete proofs
of these facts, we refer readers to [AZLSW20].

Claim 7.7 (Lemma 2.7 in [AZLSW20]). Let ∆d×d be defined as Definition 7.1. Suppose A0 =
(c0I + αZ0)−2 ∈ Rd×d, where coI + αZ0 ∈ Rd×d is positive definite, then for any U ∈ ∆d×d,

∆ψ(A0, U) ≤ 2
√
d+ α〈Z0, U〉.

Claim 7.8 (Claim 2.9 in [AZLSW20]). Let Ãt, At ∈ Rd×d be the matrices defined in Def. 7.4, if

αv>t A
1/2
t vt < 1,

then we have

Ãt = (A
−1/2
t−1 + αFt−1)−2.

Claim 7.9 (Claim 2.10 in [AZLSW20]). Let ∆d×d be defined as in Definition 7.1. Suppose P>t A
1/2
t Pt =

[b d; d c] ∈ R2×2, J = diag(1,−1), and 2αv>t A
1/2
t vt < 1 for vt ∈ Rd and At ∈ ∆d×d. Then(

J + P>t A
1/2
t Pt

)−1
=
(
J +

[
b d
d c

])−1
�
(
J +

[
2b 0
0 2c

])−1
.

Claim 7.10 (Claim 2.11 of [AZLSW20]). Suppose Z � 0 is a d× d PSD matrix with λmin(Z) ≤ 1.
Let α > 0 be a parameter and A = (αZ+ cI)−2 ∈ Rd×d, where c ∈ R is the unique real number such
that A � 0 and tr[A] = 1. Then

• α〈A1/2, Z〉 ≤ d+ α
√
d,

• 〈A,Z〉 ≤
√
d/α+ λmin(Z).

33

7.3 Algorithm

Algorithm 5 Swapping algorithm with Min-IP data structure
1: data structure DS
2: Init(d ∈ N, m ∈ N, Y ⊂ Rd, c ∈ (0, 1), τ ∈ (0, 1)) . c and τ are Min-IP parameters.
3: Insert(x ∈ Rd)
4: Delete(x ∈ Rd)
5: Query(x ∈ Rd)
6: end data structure
7:
8: procedure Swap(X ∈ Rm×d, π ∈ [0, 1]m, ε ∈ (0, 1/γ],c ∈ (0, 1),τ ∈ (0, 1)) . Theorem 7.16
9: α←

√
dβ/ε and T ← n/ε

10: X ← X(X>diag(π)X)−1/2 . Whitening
11: S0 ⊆ [m] be an arbitrary subset of support n
12: t← 1
13: /* Initialize data structure with S0 */
14: DS ds
15: Y ← {x1x

>
1 , · · · , xmx>m}

16: ds.Init(d2,m,Y ,c,τ)
17: while t ≤ T and λmin(

∑
i∈St−1

xix
>
i) ≤ 1− γε do

18: Let ct be the constant s.t. (ctI + α
∑

i∈St−1
xix
>
i)−2 ∈ ∆d×d . Binary search

19: At ← (ctId + α
∑

i∈St−1
xix
>
i)−2

20: q ← vec(At
c(1−ε)/n + 2αA

1/2
t)

21: /* Query q */
22: it ← ds.Query(q)
23: jt ← arg maxj∈St−1

B+(xj) . Def. 7.12 with 1
c as β

24: St ← St−1 ∪ {jt} \ {it}
25: t← t+ 1 . Increase the counter
26: /* Updating data structure by swapping jt and it */
27: ds.Delete(xitx

>
it

)
28: ds.Insert(xjtx

>
jt

)
29: end while
30: return St−1

31: end procedure

34

7.4 Approximate Regret Lemma

In this section, we prove the approximate regret lemma. The key consequence of this lemma is to
provide a lower bound of the eigenvalue λmin(

∑
i∈S xix

>
i).

Lemma 7.11 (approximate regret lemma). Let β ≥ 1. Suppose Ft = utu
>
t − vtv

>
t for vectors

ut, vt ∈ Rd and A0, . . . , AT−1 ∈ ∆d×d are defined in Def. 7.5 some constant α > 0. Then, if
αv>t A

1/2
t vt < β/2 for all t, we have for any U ∈ ∆d×d,

−
T−1∑
t=0

〈Ft, U〉 ≤
T−1∑
t=0

(− βu>t Atut

β + 2αu>t A
1/2
t ut

+
βv>t Atvt

β − 2αv>t A
1/2
t vt

) +
β∆ψ(A0, U)

α
.

Proof. Throughout the proof, we let α := α
β , note that α has the property that αv>t A

1/2
t vt < 1/2,

this enables us to use both Claim 7.8 and 7.9. The proof relies on the mirror descent matrices
Ãt and At we defined Def. 7.4, we need to modify the definition of Ãt with α instead of α. Per
Claim 7.8, we know that Ãt = (A

−1/2
t−1 + αFt−1)−2, and because of their definitions, we know that

∇ψ(Ãt)−∇ψ(At−1) + αFt−1 = 0 where the gradient is evaluated at Ãt. This means that

〈αFt−1, At−1 − U〉 = 〈∇ψ(At−1)−∇ψ(Ãt), At−1 − U〉

= ∆ψ(At−1, U)−∆ψ(Ãt, U) + ∆ψ(Ãt, At−1)

≤ ∆ψ(Ãt−1, U)−∆ψ(Ãt, U) + ∆ψ(Ãt, At−1). (10)

Above, the second inequality and the last inequality follow from standard inequlities and gen-
eralized Pythagorean Theorem of Bregman divergence. Now, consider the quantity ∆ψ(Ãt, At−1):

∆ψ(Ãt, At−1) = ψ(At−1)− ψ(Ãt)− 〈∇ψ(Ãt), At−1 − Ãt〉

= − 2tr[A
−1/2
t−1] + 2tr[Ã

1/2
t] + 〈Ã−1/2

t , At−1 − Ãt〉

= 〈Ã−1/2
t , At−1〉+ tr[Ã

1/2
t]− 2tr[A

1/2
t−1]

= 〈A−1/2
t−1 + αFt−1, At−1〉+ tr[Ã

1/2
t]− 2tr[A

1/2
t−1]

= α〈Ft−1, At−1〉+ tr[Ã
1/2
t]− tr[A

1/2
t−1]. (11)

Combining Eqs. (10) and (11) and telescoping t from 1 to T yields

−α
T−1∑
t=0

〈Ft, U〉 ≤ ∆ψ(A0, U)−∆ψ(ÃT , U) +
T−1∑
t=0

tr[Ã
1/2
t+1]− tr[A

1/2
t]

≤ ∆ψ(A0, U) +
T−1∑
t=0

tr[Ã
1/2
t+1]− tr[A

1/2
t], (12)

where the second inequality follows from the non-negativitiy of Bregman divergence.
It remains to upper bound tr[Ã

1/2
t+1]− tr[A

1/2
t].

Set Pt as
√
α[ut vt] ∈ Rd×2 and J = diag(1,−1) ∈ R2×2, we have αFt = PtJP

>
t . By the

definition of Ã1/2
t+1 and the matrix Woodbury formula (Fact. 4.2), we have

tr[Ã
1/2
t+1] = tr[(A

−1/2
t + PtJP

>
t)−1] = tr[A

1/2
t −A1/2

t Pt(J + P>t A
1/2
t Pt)

−1P>t A
1/2
t]. (13)

35

By linearity of trace operator, it suffices to give a spectral lower bound on the 2 × 2 matrix (J +

P>t A
1/2
t Pt)

−1/2. We will use Claim 7.9 as a lower bound:

tr[Ã
1/2
t+1]− tr[A

1/2
t] = − tr[−A1/2

t Pt(J + P>t A
1/2
t Pt)

−1P>t A
1/2
t]

≤ − tr[−A1/2
t Pt(J + diag(2αu>t A

1/2
t ut, 2αv

>
t A

1/2
t vt))

−1P>t A
1/2
t]

= − αu>t Atut

1 + 2αu>t A
1/2
t ut

+
αv>t Atvt

1− 2αv>t A
1/2
t vt

. (14)

Plugging Eq. (14) into Eq. (12), we arrive at the desired result:

−
T−1∑
t=0

〈Ft, U〉 ≤
T−1∑
t=0

(− βu>t Atu
t

β + 2αu>t A
1/2
t ut

+
βv>t Atvt

β − 2αv>t A
1/2
t vt

) +
β

α
∆ψ(A0, U).

7.5 Approximate Swapping Lemma

The goal of this section is to present and prove Lemma 7.13. We start with a helpful definition.

Definition 7.12 (B functions). Let α, β denote two fixed parameters. Let A denote a fixed matrix.
We define function B+ : Rd → R and B− : Rd → R as follows:

B+(x) =
〈A, xx>〉

β + 2α〈A1/2, xx>〉
,

B−(x) =
〈A, xx>〉

β − 2α〈A1/2, xx>〉
.

Lemma 7.13. Let β ∈ [1, γ − 1) and ε ∈ (0, 1/γ]. For every subset S ⊂ [m] of cardinality n (let S
denote [m] \ S), suppose λmin(

∑
i∈S xix

>
i) ≤ 1 − γε and A = (cI + α

∑
i∈S xix

>
i)−2, where c ∈ R

is the unique number such that A � 0 and tr[A] = 1. For any α =
√
dβ/ε and n ≥ 6

γ−1−βd/ε
2, we

have

• Part 1. There exists i ∈ S such that 2αx>i Axi < β and B−(xi) ≤ 1−ε
βn ,

• Part 2. There exists j ∈ S such that B+(xj) ≥ 1
βn .

Proof. In this proof, we will extensively use Claim 7.10, therefore, we pre-compute the value d+α
√
d

and
√
d/α here for references. By the choice of our α, we have

d+ α
√
d = (1 +

β

ε
)d ,
√
d/α =

ε

β
. (15)

We also define the quantity ν := mini∈S,2αx>i Axi<β
B−(xi) which will be used throughout our proof.

The proof directly follows from combining Claim 7.14 and Claim 7.15.

36

7.6 Approximate Swapping Lemma, Part 1

In this section, we will prove that as long as we enter the main while loop of the algorithm, we can
always find an index i ∈ S such that B−(xi) is small.

Claim 7.14 (Part 1 of Lemma 7.13). There exists i ∈ S such that 2αx>i Axi < β and B−(xi) ≤ 1−ε
βn .

Proof. To demonstrate the existence of such an i, it suffices to show that mini∈S,2αx>i Axi<β
B−(xi) ≤

1−ε
βn , we use ν to denote this minimum value. Note that ν > 0, due to the fact 2αx>i Axi < β and A is
positive definite. To start off, we first show that there always exists an i such that 2α〈A1/2, xix

>
i 〉 <

1. Define Z =
∑

i∈S xix
>
i , and by definition A = (cI +α

∑
i∈S xix

>
i)−2 = (αZ + cI)−2. Assume for

the sake of contradiction that such i does not exists. We have∑
i∈S

2α〈A1/2, xix
>
i 〉 = 2α〈A1/2, Z〉 ≥ |S| = n. (16)

On the other hand, because Z � 0 and λmin(Z) < 1, invoking Claim 7.10 we get

2α〈A1/2, Z〉 ≤ 2d+ 2α
√
d,

which contradicts Eq. (16) given the choice of α and n > 4d/ε. Thus, there must exist i ∈ S such
that 2α〈A1/2, xix

>
i 〉 < 1. Since we set β ≥ 1, this means we can always find an index i such that

2α〈A1/2, xix
>
i 〉 < β holds. By the same token, we also have

∑
i∈S(β − 2α〈A1/2, xix

>
i 〉) ≥ 0. We

claim that

(β − 2α〈A1/2, xix
>
i 〉)ν ≤ 〈A, xix>i 〉, for all i ∈ S,

because if 2α〈A1/2, xix
>
i 〉 ≥ β the LHS is non-positive while the RHS is always non-negative due to

the positive semi-definiteness of A. Subsequently,

ν ≤
∑

i∈S〈A, xix>i 〉∑
i∈S(β − 2α〈A1/2, xix>i 〉)

≤
√
d/α+ λmin(

∑
i∈S xix

>
i)

βn− 2d− 2α
√
d

≤ ε/β + 1− γε
βn(1− βε/3)

≤ 1− ε
βn

where the first step holds because the denominator is strictly positive as we have shown; the sec-
ond step is due to Claim 7.10; the third step has used our choices α and n and our assumption
λmin(

∑
i∈S xix

>
i) ≤ 1 − γε; and the forth step has used 1 − βε/3 < 1. We have thus proved that

ν ≤ (1− ε)/(βn). This proves the existence of the i we want.

7.7 Approximate Swapping Lemma, Part 2

In this section, we prove the other key gredient for the swapping to proceed, i.e., there exists an
j ∈ S such that B+(xj) is large.

Claim 7.15 (Part 2 of Lemma 7.13). There exists j ∈ S such that B+(xj) ≥ 1
βn .

37

Proof. Define t = 1/(βn). To prove Part 2 it suffices to show that∑
j∈S

πj〈A, xjx>j 〉 ≥ t ·
∑
j∈S

πj(β + 2α〈A1/2, xjx
>
j 〉), (17)

because πj ≥ 0 for all j ∈ [m]. Recall that
∑m

j=1 πj = n,
∑m

j=1 πjxjx
>
j = Id. We then have∑

j∈S

πj(β + 2α〈A1/2, xjx
>
j 〉) ≤ β(n−

∑
j∈S

πj) + 2α ·
∑
j∈S

πj〈A1/2, xjx
>
j 〉

≤ β(n−
∑
j∈S

πj) + 2α ·
m∑
j=1

πj〈A1/2, xjx
>
j 〉

= βn− β
∑
j∈S

πj + 2α〈I, A1/2〉

= βn− β
∑
j∈S

πj + 2α · tr[A1/2].

Similarly, ∑
j∈S

πj〈A, xjx>j 〉 = 〈I −
∑
j∈S

πjxjx
>
j , A〉

= tr[A]−
∑
j∈S

πj〈A, xjx>j 〉

Subsequently, ∑
j∈S

πj〈A, xjx>j 〉 − t ·
∑
j∈S

πj(β + 2α〈A1/2, xjx
>
j 〉)

≥ tr[A]−
∑
j∈S

πj〈A, xjx>j 〉 − t · β · (n−
∑
j∈S

πj)− 2αt · tr[A1/2]

≥ 1−
∑
j∈S

πj〈A, xjx>j 〉 − t · β · (n−
∑
j∈S

πj)− 2αt
√
d

= 1− tβn− 2tα
√
d−

∑
j∈S

πj(〈A, xjx>j 〉 − tβ)

≥ 1− tβn− 2tα
√
d−

∑
j∈S

max{〈A, xjx>j 〉 − tβ, 0}

= 1− tβn− 2tα
√
d−

∑
j∈S

(〈A, xjx>j 〉 − tβ)−
∑
j∈S

max{(tβ − 〈A, xjx>j 〉), 0}

≥ 1− 2tα
√
d−
√
d/α− λmin(

∑
j∈S

xjx
>
j)−

∑
j∈S

max{(tβ − 〈A, xjx>j 〉), 0}

≥ (γ − β)ε− 2d

εn
−
∑
j∈S

max{tβ − 〈A, xjx>j 〉, 0} (18)

where the second step follows from Fact 4.1 and tr[A] = 1. The forth step follows from πj ≤ 1
for all j, the second-to-last step follows from we apply

∑
j∈S〈A, xjx>j 〉 ≤

√
d/α+ λmin(

∑
j∈S xjx

>
j)

which comes from Claim 7.10. The fifth step comes from the fact that max{x, 0}−max{−x, 0} = x.
Finally, the last step comes from the choices of α, t and λmin(

∑
j∈S xjx

>
j) ≤ 1− γε.

38

Furthermore, because (β−2α〈A1/2, xix
>
i 〉)ν ≤ 〈A, xix>i 〉 for all i ∈ S, using Claim 7.10 we have∑

i∈S′
(βν − 〈A, xix>i 〉) ≤

∑
i∈S′

2να〈A1/2, xix
>
i 〉 ≤ 2ν(d+ α

√
d),

for all S′ ⊆ S.
Consider S′ = {i ∈ S : βt− 〈A, xix>i 〉 ≥ 0}. We then have∑

j∈S′
max{βt− 〈A, xjx>j 〉, 0} =

∑
j∈S′

(βt− 〈A, xjx>j 〉)

= β(t− ν)|S′|+
∑
j∈S′

(βν − 〈A, xjx>j 〉)

≤ β(t− ν)n+ 2ν(d+ α
√
d)

≤ ε+
4d/ε

n
(19)

where the last two inequalities hold because t − ν = ε/(βn) ≥ 0, |S′| ≤ |S| = n, ν ≤ 1/(βn) and
the choice of α.

Combining Eqs.(18) and (19) we arrive at∑
j∈S

πj{〈A, xjx>j 〉 − t(β + 2α〈A1/2, xjx
>
j 〉)} ≥ (γ − 1− β)ε− 6d

εn
.

By choice of n, the RHS of the above inequality is non-negative, which finishes the proof of Eq. (17)
and thus also the proof of Part 2.

7.8 Implication of Swapping Lemma

Note that Lemma 7.13 gives rise to a natural swapping algorithm: at each round, we can find
an index i ∈ S with 2αx>i Axi < β and B−(xi) ≤ 1−ε

βn and an index j ∈ S with B+(xj) ≥ 1
βn ,

then swap them. As demonstrated in Alg. 5, the task of finding i is a search for minimum inner
product, which can be implemented via our data structures. On the other hand, the search for j
is a maximum inner product search, or so-called nearest-neighbor problem. Unlike our Min-IP data
structure, most nearest-neighbor search data structures do not support efficient dynamic insertion
and deletion, therefore, we instead perform exhaustive search on j. Notice this is tractable since
in our regime n is large compared to n −m. Hence, the size of S is comparably small, exhaustive
search is doable.

We also remark that by considering to finding a β-approximation point instead of an point
with distance exactly 1, we require the cardinality of S to be larger since n ∝ d/ε2

γ−1−β . This is
an interesting trade-off compared to the approximate result we get in one-sided Kadison-Singer,
where the quality of solution becomes worse when β becomes larger. Here, the quality of solution
is unaffected while we have more leeway to pack vectors into S. To some extent, this makes the
problem easier similar to a worse quality of solution.

7.9 Main Result

In this section, we present the correctness and runtime analysis of Algorithm 5. The correctness
follows from the approximate regret and swap lemma, while the runtime comes from the approximate
Min-IP data structure.

39

Theorem 7.16. Let π ∈ [0, 1]m with ‖π‖1 ≤ n and
∑m

i=1 πixix
>
i = Id. Let γ ≥ 3 and ε ∈ (0, 1

γ].
Then, there exists a subset S ⊂ [m] with |S| ≤ n such that

λmin(
∑
i∈S

xix
>
i) ≥ 1− γ · ε.

Let τ, δ ∈ (0, 1) and c ∈ (1
γ−1 , 1). If n ≥ 6d/ε2

γ−1−2/c and α =
√
d/(cε), then there exists a randomized

algorithm with success probability at least 1−δ and running time O(d2 log(n/δ)·Tinit+Tmat(m, d, d)+
n
ε · (d

2 log(n/δ) · Tquery + Tmat(d, d, d) · log d/(cε) + (m− n) · d2)). Furthermore,

• If c ∈ (τ, 8τ
7+τ), then Tinit = O(n1.5d2 log3 n) and Tquery = O(

√
nd2 log3 n), so the total running

time is

O(Tmat(m, d, d) + n1.5d4 log3 n log(n/δ))

+ O(
n

ε
· (Tmat(d, d, d) log d/(cε) +

√
nd4 log3 n log(n/δ) + (m− n) · d2));

• If c ∈ (τ, 400τ
399+τ), then then Tinit = O(n1.01d2 log3 n) and Tquery = O(n0.01d2 log3 n), so the

total running time is

O(Tmat(m, d, d) + n1.01d4 log3 n log(n/δ))

+ O(
n

ε
· (Tmat(d, d, d) log d/(cε) + n0.01d4 log3 n log(n/δ) + (m− n) · d2)).

Proof. We will show Alg. 5 satisfies the properties in the theorem statement. Similar to the proof
of Theorem 6.11, we need to scale down the query point by a factor of τ . This means each query
will return an index i ∈ St−1 such that

x>i Atxi
c(1− ε)/n

+ 2αx>i A
1/2
t xi ≤

1

c
,

Set β = 1
c , note this is equivalent to find an index i satisfying the first result of Lemma 7.13, which

as we have shown, does exist.
This means that at each iteration, we either have

λmin(
∑
i∈S

xix
>
i) ≥ 1− γε,

which we are done, or we can find it and jt such that

B−(xit)−B+(xjt) ≤ −
ε

βn
.

Combining this fact with Lemma 7.11 and Claim 7.7, we have

−〈Z0 +

T−1∑
t=0

Ft, U〉 ≤
T−1∑
t=0

β(B−(xit)−B+(xjt)) +
2β
√
d

α

≤ − T · ε
n

+ 2ε,

Since we can choose U such that

−〈Z0 +

T−1∑
t=0

Ft, U〉 = −λmin(Z0 +

T−1∑
t=0

Ft) = −λmin(
∑
i∈ST

xix
>
i),

40

this gives a lower bound on the desired eigenvalue we want:

λmin(
∑
i∈ST

xix
>
i) ≥ T · ε

n
− 2ε.

Since T = n
ε , it is lower bounded by 1−2ε > 1−γε, and we have completed the proof of correctness.

For the running time, we separately consider initialization and cost per iteration. In initialization
phase,

• Computing X(X>diag(π)X)−1/2 takes O(Tmat(m, d, d)) time;

• Initializing data structure with n random points takes timeO(n1.5d2 log3 n) orO(n1.01d2 log3 n)
based on the choice of c (Corollary 5.8 and 5.10);

For each iteration, we perform the following:

• Computing eigen-decomposition of
∑

i∈St−1
xix
>
i takes O(d3) time;

• Using binary search to finding ct takes O(d3 log d/(cε)) since the searching range is O(α+
√
d)

and each search takes Tmat(d, d, d) to form the matrix and compute its trace;

• The time of querying data structure is either O(
√
nd2 log3 n) or O(n0.01d2 log3 n);

• The brute force search for j takes O((m− n) · d2) if we pre-compute At and A
1/2
t .

Finally, similar to Theorem 6.11, we need to use O(d2 log(n/δ)) copies of independent Min-IP data
structures to ensure success probability is at least 1− δ, and requires n to be larger. This concludes
the proof of running time.

Algorithm Preprocessing Cost per Iter. Total Time
[AZLSW20] mdω−1 md2 mdω−1 + ε−1nmd2

Alg. 5 mdω−1 + n1.5d4 n0.5d4 mdω−1 + ε−1n1.5d4

Alg. 5 mdω−1 + n1.01d4 n0.01d4 mdω−1 + ε−1n1.01d4

Table 4: Comparison of different algorithms for experimental design, for simplicity we assume
n� m− n and ignore Õ. All algorithms require ε−1n iterations. Full version of Table 2.

Remark 7.17. Note that our algorithm improves the vanilla algorithm [AZLSW20] in two-folds:
1). we prove that it is not necessary to find the minimum and maximum index as in their vanilla
algorithm, it suffices to find an index meets certain threshold, which can be reformulated into a
Min-IP problem. Also, if we only use a β-approximation, the total number of iterations of algorithm
and the quality of resulting set is unaffected, the only influenced factor is the size of set S can
be larger. 2). our algorithm has better running time when n is large compared to m − n, e.g.,
m − n = mo(1) and n = m −mo(1). We improve the query time for searching in large set S while
tolerating the brutal force search in small set S. This also aligns well with our quantization of S
under approximation β, i.e., since we can only get a β-approximation solution, the set S that we
require our regime to work becomes larger.

Similar to one-sided Kadison-Singer, our algorithm is “imbalanced”. It can efficiently deal with
the minimum inner product type queries, but falls short for maximum inner product search (through
brutal force search). One can imagine using nearest-neighbor search to facilitate the maximum
inner product search. On one hand, it is not clear whether data structures such as locality-sensitive
hashing support efficient dynamic operations, on the other hand, it is out of the scope of this paper.
We leave it as one of the future directions.

41

Appendix

A Solving Sub-task of CPM via Furthest-Neighbor Search

Cutting plane method (CPM, Jiang, Lee, Song and Wong [JLSW20]) is popular in solving convex
programming problem. Suppose there exists a convex set K in a closed box with radius R, the goal
is to either find a point in K or prove that K does not contain a ball of radius ε. A standard CPM
solver needs to query a separation oracle at each round for a hyperplane to separate the point from
set K. This new hyperplane will either be added as a new constraint into the constraint matrix A,
or help discard redundant constraint from A. In order to measure the importance of constraints,
it is instructive to compute or at least approximate the leverage score of each constraint, which
is the major computation bottleneck for CPM. As shown in [JLSW20], it is a nontrivial task to
maintain all the leverage scores under consecutive updates to constraint matrix A and a diagonal
matrix W . It is unclear whether maintaining all leverage scores under updates in time o(m2) per
iteration is achievable. This is also a critical step in CPM, since it has to compute a barrier function
which uses all the leverage scores. Instead, we focus on a sub-task, which is to find a constraint
with smallest leverage score then discard it. As we will show in this section, this sub-task can be
reformulated into a data structure design problem that supports efficient query for small leverage
score. By capitalizing the approximate Min-IP data structure, we give an efficient implementation
of such a data structure. Though this does not solve the big question of maintaining all leverage
scores fast, we point out this is a promising direction for further improvements on CPM.

Throughout this section, we consider the scheme where m� n.

A.1 Data Structure Design for Min Leverage Score

We consider the following task: let W ∈ Rm×m be a diagonal matrix with non-negative diagonal
entries, and A ∈ Rm×n. At each timestamp t, W undergoes a rank rt update, namely,

W (t+1) ←W (t) + ∆W

where W (t) ∈ Rm×m denotes matrix W at t-th iteration, and rank(∆W) = rt. For the sake of
discussion, we assume 1

T

∑T
t=1 rt is small. Given a threshold parameter s > 0, our task is to find a

row of matrix
√
WA with its leverage score smaller than or equal s. Before formally defining the

task, we define the notion of leverage score:

Definition A.1. Let A ∈ Rm×n be a full rank matrix, and we use ai ∈ Rn to denote the i-th row
of A, we define the statistical leverage score of row ai as

τi(A) := a>i (A>A)−1ai.

We formulate the main task as a data structure design problem:

Definition A.2. We consider a dynamic data structure design problem that has the following
stages:

• Initialization : The data structure can observe a matrix A ∈ Rm×n and a diagonal matrix
W (0) ∈ Rm×m with non-negative entries. It can also observe a threshold parameter s > 0 for
leverage score. It can perform preprocessing on A, W (0) and s.

• Update: At iteration t, the data structure receive a new diagonal matrix ∆W (t) with the
guarantee that ‖∆W (t)‖0 = rt. The new W (t) should be updated as W (t−1) + ∆W (t).

42

• Query: At each iteration (after update W (t)), the data structure can be queried to output an
index i ∈ m such that τi(

√
W (t)A) ≤ s.

A.2 Naive Implementation

Naively, we can do the following for each iteration t:

• Compute matrix (A>W (t)A)−1.

• Compute (
√
W (t)A)i,∗(A

>W (t)A)−1(
√
W (t)A)>i,∗ for each i ∈ [m].

• Output i such that τi(
√
W (t)A) ≤ s.

We give a rough runtime analysis. Since W (t) is a diagonal matrix, the first step is essentially
multiplying an n×m matrix by an m× n then invert the n× n matrix. The first matrix product
can be viewed as doing m

n pairs of n× n matrix multiplication, which takes O(mnω−1) time, since
m > n, the time of first step is O(mnω−1). The second step takes O(mn2) time.

Note that we haven’t exploited the fact that the change ∆W has only rt entries, this means
we can use low rank updates such as matrix Woodbury identity to efficiently update the inverse,
or even the projection. Consider the following algorithm, which instead maintains the projection
matrix

√
W (t)A(A>W (t)A)−1A>(

√
W (t)):

• Initially compute M (0) =
√
W (0)A(A>W (0)A)−1A>(

√
(W (0))).

• Suppose we have maintained the projectionM (t−1) =
√
W (t−1)A(A>W (t−1)A)−1A>(

√
(W (t−1))).

• Let S = {i : ∆W
(t)
i,i 6= 0}, let MS ∈ Rn×rt be the rt columns of M from S, and let

MS,S ,∆W
(t)
S,S ∈ Rrt×rt be the rt rows and columns from S.

• M (t) = M (t−1) −M (t−1)
S · ((∆W (t)

S,S)−1 + (M
(t−1)
S,S)−1)−1 · (M (t−1)

S)>.

• Output i such that M (t)
i,i ≤ s.

The most expensive step of initialization is multiplying an m×n matrix by an n×m matrix, which
takes Tmat(m,n,m) time. The third step follows directly from apply matrix Woodbury identity (4.2),
and it takes Tmat(n, rt, n) time. The last step involves reading m diagonal entries of M . This leads
to following simple claim.

Claim A.3. The above naive maintenance algorithm takes Tmat(m,n,m) for initialization and
O(m+ Tmat(rt, n, n)) time per iteration.

Note that in the regime where rt ≤ m and n is small, the naive implementation has to pay at
least Ω(m) time to read all diagonal entries of M (t). This is essentially the same as computing all
the leverage scores and find its minimum. One natural question is whether it’s possible to avoid
searching through all leverage scores at each round. Following the natural question we asked in
Section 1, here we want to consider

Is it possible to beat O(m) time barrier for this small leverage score search problem?

43

A.3 Min Leverage Score via AFN

We will show that by using furthest-neighbor search data structure, it is possible to accelerate the
bottleneck step of querying the smallest leverage score. Before stating the main proposition, we
define some runtime metric with respect to our data structure.

Definition A.4. We define Tinit(m, d, τ, c) and Tquery(m, d, τ, c) to be the preprocessing and query
for approximate Min-IP data structure (5.6) with m points, dimension d, inner product threshold τ
and approximate factor c respectively.

Proposition A.5. Let τ, c ∈ (0, 1). There exists a randomized data structure that can solve the
design problem in A.2 with the following guarantee:

• Initialization takes Õn(m+ Tinit(m,n
2, τ, c)) time;

• Update takes Õn(Tmat(rt, n, n) + rt · Tquery(m,n2, τ, c)) time;

• Query will output an index i ∈ [m] such that πi(
√
W (t)A) ≤ 2s

c in time Õn(Tquery(m,n2, τ, c)).

Moreover,

• If c ∈ (τ, 8τ
7+τ), then4

Tinit(m,n
2, τ, c) = Õn(m1.5)

Tquery(m,n2, τ, c) = Õn(m0.5)

and

• If c ∈ (τ, 400τ
399+τ), then

Tinit(m,n
2, τ, c) = Õn(m1.01)

Tquery(m,n2, τ, c) = Õn(m0.01)

Proof. Note that in each of Lemma A.7, A.8 and A.9, we have proved each of the bullet point. It
remains to justify the runtime Tinit and Tquery, which follows from the guarantee of approximate
Min-IP data structure under different setups of c, see Corollary 5.8 and 5.10.

Remark A.6. For Update time, note that Tmat(rt, n, n) can be upper bounded via O(nrω−1
t) as-

sume rt < n, therefore, the runtime of Update is dominated by the term Õn(rt · Tquery(m,n2, τ, c)),
since it requires at least O(n2 ·rt) time. When number of iterations T becomes larger, the initializa-
tion time can be effectively amortized across all the iterations. Suppose at each iteration we need
one call for each of Update and Query, then we have reduced the cost per iteration from a naive
O(m + Tmat(rt, n, n)) to Õn(rt ·m0.5) or even Õn(rt ·m0.01). In the regime where rt is small and
m� n, this gives a huge improvement on cost per iteration. However, in standard CPM setup, we
will have m = O(n). We believe our considered setting where constraint matrix A is tall and thin
is also interesting. We also remark that our data structure can only output a vector with approx-
imately small leverage score, and the effect of this approximation factor has not yet been factored
into the global error analysis of CPM procedure. We leave it as a future direction to pursue.

4We use Õn to hide poly(n, logm).

44

A.4 Initialization

In this section, we prove the procedure Init of Algorithm 6 satisfies the following guarantee.

Lemma A.7. The Init procedure of Algorithm 6 takes time Õn(mn2 + Tinit(m,n
2, τ, c)).

Proof. Note that in Init, we need to compute M , which involves a product between one n × m
matrix and m × n matrix and inverting an n × n matrix, since m � n, this time is dominated by
Tmat(n,m, n) ≤ O(mnω−1). Next, to compute set V , we need to compute outer product of vectors
in Rn, for m of them. This takes O(mn2) time. Finally, initializing data structure with m points,
dimension n2, distance τ and approximate factor c takes Tinit(m,n

2, τ, c) time.

A.5 Update

In this section, we give a runtime analysis of procedure Update.

Lemma A.8. The Update procedure of Algorithm 6 takes time O(Tmat(rt, n, n)+rt·Tquery(m,n2, τ, c)).

Proof. For Update, note that computing Mnew takes

• Inverting an rt × rt matrix, which takes Tmat(rt, rt, rt) time;

• Computing product of rt× n and n× n matrix, which takes Tmat(rt, n, n) time (can be upper
bounded by O(n2rω−1

t));

• Computing product of n× rt and rt×n matrix, which takes Tmat(n, rt, n) time (can be upper
bounded by O(n2rω−1

t)).

This means computing Mnew takes O(Tmat(rt, n, n)) ≤ O(n2rω−1
t) time. When updating the data

structure, notice we only need to modify rt points, since
√
W is a diagonal matrix, computing the

outer product of each point only takes O(n2) time and each query uses Tquery(m,n2, τ, c) time, so
this step overall takes O(Tmat(rt, n, n) + rt · Tquery(m,n2, τ, c)) time.

A.6 Query

We present a lemma for Query, which gives a 1
c approximate solution.

Lemma A.9. The Query procedure of Algorithm 6 outputs an index i ∈ [m] such that τi(
√
W

(t)
A) ≤

s
c in time Tquery(m,n2, τ, c).

Proof. The analysis for Query is straightforward, forming the query point takes O(n2) time and
querying the point takes Tquery(m,n2, τ, c). The guarantee follows from the approximate Min-IP
data structure guarantee.

45

Algorithm 6 Fast Min-Leverage Score Data Structure
1: data structure DS
2: Init(d ∈ N, m ∈ N, Y ⊂ Rd, c ∈ (0, 1), τ ∈ (0, 1)) . c and τ are Min-IP parameters.
3: Insert(x ∈ Rd)
4: Delete(x ∈ Rd)
5: Query(x ∈ Rd)
6: end data structure
7:
8: data structure MinLeverageScore . Proposition A.5
9:

10: members
11: M ∈ Rn×n . Inverse being maintained
12: A ∈ Rn×m
13: W old ∈ Rm×m . Old W matrix
14: s ∈ R
15: DS ds
16: end members
17:
18: procedure Init(A ∈ Rm×n,W (0) ∈ Rm×m, s ∈ R, c ∈ (0, 1), τ ∈ (0, 1)) . Lemma A.7
19: A← A
20: M ← (A>WA)−1 . Explicitly computing inverse at initialization
21: V ← {(

√
WA)>i,∗(

√
WA)i,∗ : i ∈ [m]}

22: ds.Init(n2,m, V, c, τ)
23: end procedure
24:
25: procedure Update(W (t) ∈ Rm×m) . Lemma A.8
26: ∆W ←W (t) −W old . ∆W ∈ Rm×m, ‖vec(∆W)‖0 = rt
27: S ← {i : ∆Wi,i 6= 0}
28: Let ∆WS,S ∈ Rrt×rt be rt rows and columns of ∆W from S
29: Let AS ∈ Rn×rt be the rt columns of A from S
30: . Compute Mnew = (A>W (t)A)−1 via matrix Woodbury identity
31: Mnew ←M −MA>S (∆W−1

S,S +A>SMAS)−1ASM
32: for i ∈ S do
33: ds.Delete((

√
W

old
A)>i,∗(

√
W

old
A)i,∗)

34: ds.Insert((
√
W

(t)
A)>i,∗(

√
W

(t)
A)i,∗)

35: end for
36: W old ←W (t),M ←Mnew

37: end procedure
38:
39: procedure Query . Lemma A.9
40: q ← 1

sτ vec(M)
41: i← ds.Query(q)
42: return i
43: end procedure
44:
45: end data structure

46

References

[ACW16] Josh Alman, Timothy M Chan, and Ryan Williams. Polynomial representations of
threshold functions and algorithmic applications. In 2016 IEEE 57th Annual Sympo-
sium on Foundations of Computer Science (FOCS), pages 467–476. IEEE, 2016.

[ADLS17] Jayadev Acharya, Ilias Diakonikolas, Jerry Li, and Ludwig Schmidt. Sample-optimal
density estimation in nearly-linear time. In Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1278–1289. SIAM,
2017.

[AGSS18] Nima Anari, Shayan Oveis Gharan, Amin Saberi, and Nikhil Srivastava. Approx-
imating the largest root and applications to interlacing families. In Proceedings of
the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 1015–1028. SIAM, 2018.

[ALS+18] Alexandr Andoni, Chengyu Lin, Ying Sheng, Peilin Zhong, and Ruiqi Zhong. Sub-
space embedding and linear regression with orlicz norm. In International Conference
on Machine Learning (ICML), pages 224–233. PMLR, 2018.

[AMS92] Pankaj K Agarwal, Jiří Matoušek, and Subhash Suri. Farthest neighbors, maximum
spanning trees and related problems in higher dimensions. Computational Geometry,
1(4):189–201, 1992.

[And79] Joel Anderson. Extreme points in sets of positive linear maps on B(H). Journal of
Functional Analysis, 31:195–217, 1979.

[And81] Joel Anderson. A conjecture concerning the pure states of B(H) and a related theorem.
In Topics in modern operator theory, pages 27–43. Springer, 1981.

[AS10] Pankaj K Agarwal and R Sharathkumar. Streaming algorithms for extent problems
in high dimensions. In Proceedings of the twenty-first annual ACM-SIAM symposium
on Discrete algorithms (SODA), pages 1481–1489. SIAM, 2010.

[AV95] David S Atkinson and Pravin M Vaidya. A cutting plane algorithm for convex pro-
gramming that uses analytic centers. Mathematical Programming, 69(1-3):1–43, 1995.

[AW02] R. Ahlswede and A. Winter. Strong converse for identification via quantum channels.
IEEE Transactions on Information Theory, 48(3):569–579, 2002.

[AZLSW20] Zeyuan Allen-Zhu, Yuanzhi Li, Aarti Singh, and Yining Wang. Near-optimal discrete
optimization for experimental design: A regret minimization approach. Mathematical
Programming, pages 1–40, 2020.

[Bes96] Sergei Bespamyatnikh. Dynamic algorithms for approximate neighbor searching. In
CCCG, pages 252–257, 1996.

[BLSS20] Jan van den Brand, Yin Tat Lee, Aaron Sidford, and Zhao Song. Solving tall dense
linear programs in nearly linear time. In STOC, 2020.

[Brä18] Petter Brändén. Hyperbolic polynomials and the Kadison-Singer problem. In arXiv
preprint. https://arxiv.org/pdf/1809.03255, 2018.

47

https://arxiv.org/pdf/1809.03255

[Bra20] Jan van den Brand. A deterministic linear program solver in current matrix multi-
plication time. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 259–278. SIAM, 2020.

[Bra21] Jan van den Brand. Unifying matrix data structures: Simplifying and speeding up
iterative algorithms. In Symposium on Simplicity in Algorithms (SOSA), pages 1–13.
SIAM, 2021.

[BSS12] Joshua Batson, Daniel A Spielman, and Nikhil Srivastava. Twice-ramanujan sparsi-
fiers. SIAM Journal on Computing, 41(6):1704–1721, 2012.

[BV02] Dimitris Bertsimas and Santosh Vempala. Solving convex programs by random walks.
In Proceedings of the thiry-fourth annual ACM symposium on Theory of computing
(STOC), pages 109–115. ACM, 2002.

[BWZ16] Christos Boutsidis, David P Woodruff, and Peilin Zhong. Optimal principal compo-
nent analysis in distributed and streaming models. In Proceedings of the forty-eighth
annual ACM symposium on Theory of Computing (STOC), pages 236–249, 2016.

[CLS19] Michael B Cohen, Yin Tat Lee, and Zhao Song. Solving linear programs in the current
matrix multiplication time. In STOC, 2019.

[Coh16] Michael Cohen. Improved spectral sparsification and Kadison-Singer for sums of
higher-rank matrices. In Banff International Research Station for Mathematical
Innovation and Discovery. https://open.library.ubc.ca/cIRcle/collections/
48630/items/1.0340957, 2016.

[CT06] Peter G. Casazza and Janet Crandell Tremain. The Kadison–Singer problem in
mathematics and engineering. Proceedings of the National Academy of Sciences,
103(7):2032–2039, Feb 2006.

[CW13] Kenneth L. Clarkson and David P. Woodruff. Low rank approximation and regression
in input sparsity time. In Symposium on Theory of Computing Conference (STOC),
pages 81–90, 2013.

[CW19] Lijie Chen and Ryan Williams. An equivalence class for orthogonal vectors. In
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 21–40. SIAM, 2019.

[DLY21] Sally Dong, Yin Tat Lee, and Guanghao Ye. A nearly-linear time algorithm for linear
programs with small treewidth: A multiscale representation of robust central path. In
Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing
(STOC), 2021.

[GIV01] Ashish Goel, Piotr Indyk, and Kasturi R Varadarajan. Reductions among high di-
mensional proximity problems. In SODA, volume 1, pages 769–778. Citeseer, 2001.

[Ind00] Piotr Indyk. Dimensionality reduction techniques for proximity problems. In Proceed-
ings of the eleventh annual ACM-SIAM symposium on Discrete algorithms (SODA),
pages 371–378, 2000.

48

https://open.library.ubc.ca/cIRcle/collections/48630/items/1.0340957
https://open.library.ubc.ca/cIRcle/collections/48630/items/1.0340957

[Ind03] Piotr Indyk. Better algorithms for high-dimensional proximity problems via asym-
metric embeddings. In Proceedings of the fourteenth annual ACM-SIAM symposium
on Discrete algorithms (SODA), pages 539–545, 2003.

[Jia21] Haotian Jiang. Minimizing convex functions with integral minimizers. In Proceedings
of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 976–985.
SIAM, 2021.

[JLSW20] Haotian Jiang, Yin Tat Lee, Zhao Song, and Sam Chiu-wai Wong. An improved
cutting plane method for convex optimization, convex-concave games, and its appli-
cations. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing (STOC), pages 944–953, 2020.

[JSWZ21] Shunhua Jiang, Zhao Song, Omri Weinstein, and Hengjie Zhang. Faster dynamic
matrix inverse for faster lps. In Proceedings of the 53rd Annual ACM SIGACT Sym-
posium on Theory of Computing (STOC), 2021.

[Kha80] Leonid G Khachiyan. Polynomial algorithms in linear programming. USSR Compu-
tational Mathematics and Mathematical Physics, 20(1):53–72, 1980.

[KLS20] Rasmus Kyng, Kyle Luh, and Zhao Song. Four deviations suffice for rank 1 matrices.
In Advances in Mathematics, 2020.

[KS59] Richard V. Kadison and Isadore M. Singer. Extensions of pure states. American
Journal of Mathematics, 81(2):383–400, 1959.

[KTE88] Leonid G Khachiyan, Sergei Pavlovich Tarasov, and I. I. Erlikh. The method of
inscribed ellipsoids. In Soviet Math. Dokl, volume 37, pages 226–230, 1988.

[LS15] Yin Tat Lee and He Sun. Constructing linear-sized spectral sparsification in almost-
linear time. In IEEE 56th Annual Symposium on Foundations of Computer Science
(FOCS), pages 250–269, 2015.

[LS17] Yin Tat Lee and He Sun. An sdp-based algorithm for linear-sized spectral sparsi-
fication. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory
(STOC), pages 678–687, 2017.

[LSW15] Yin Tat Lee, Aaron Sidford, and Sam Chiu-wai Wong. A faster cutting plane method
and its implications for combinatorial and convex optimization. In 56th Annual IEEE
Symposium on Foundations of Computer Science (FOCS), 2015.

[LSZ19] Yin Tat Lee, Zhao Song, and Qiuyi Zhang. Solving empirical risk minimization in
the current matrix multiplication time. In COLT, 2019.

[LW17] Renato Paes Leme and Sam Chiu-wai Wong. Computing walrasian equilibria: Fast
algorithms and structural properties. In Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 632–651. SIAM, 2017.

[MSS15] Adam W. Marcus, Daniel A. Spielman, and Nikhil Srivastava. Interlacing families
II: Mixed characteristic polynomials and the Kadison-Singer problem. Ann. of Math.
(2), 182(1):327–350, 2015.

49

[NN89] Yurii Nesterov and Arkadi Nemirovski. Self-concordant functions and polynomial
time methods in convex programming. preprint, central economic & mathematical
institute, ussr acad. Sci. Moscow, USSR, 1989.

[NN13] Jelani Nelson and Huy L Nguyên. OSNAP: Faster numerical linear algebra algorithms
via sparser subspace embeddings. In 54th Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pages 117–126. IEEE, 2013.

[PSSS15] Rasmus Pagh, Francesco Silvestri, Johan Sivertsen, and Matthew Skala. Approxi-
mate furthest neighbor in high dimensions. In International Conference on Similarity
Search and Applications, pages 3–14. Springer, 2015.

[Rud96] Mark Rudelson. Random vectors in the isotropic position, 1996.

[Sar06] Tamás Sarlós. Improved approximation algorithms for large matrices via random pro-
jections. In Proceedings of 47th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), 2006.

[Sho77] Naum Z Shor. Cut-off method with space extension in convex programming problems.
Cybernetics and systems analysis, 13(1):94–96, 1977.

[Sri10] Nikhil Srivastava. Spectral sparsification and restricted invertibility. PhD thesis, Yale
University, 2010.

[SWZ17] Zhao Song, David P Woodruff, and Peilin Zhong. Low rank approximation with
entrywise `1-norm error. In Proceedings of the 49th Annual Symposium on the Theory
of Computing (STOC), 2017.

[SWZ19] Zhao Song, David P Woodruff, and Peilin Zhong. Relative error tensor low rank
approximation. In SODA, 2019.

[SY21] Zhao Song and Zheng Yu. Oblivious sketching-based central path method for solving
linear programming problems. In 38th International Conference on Machine Learning
(ICML), 2021.

[Vai89] Pravin M Vaidya. A new algorithm for minimizing convex functions over convex sets.
In 30th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages
338–343, 1989.

[VKSdBO00] Marc Van Kreveld, Otfried Schwarzkopf, Mark de Berg, and Mark Overmars. Com-
putational geometry algorithms and applications. Springer, 2000.

[Wea04] Nik Weaver. The Kadison–Singer problem in discrepancy theory. Discrete mathemat-
ics, 278(1-3):227–239, 2004.

[Wea13] Nik Weaver. The Kadison–Singer problem in discrepancy theory, ii.
https://arxiv.org/pdf/1303.2405.pdf, 2013.

[Woo49] Max A Woodbury. The stability of out-input matrices. Chicago, IL, 9, 1949.

[Woo50] Max A Woodbury. Inverting modified matrices. 1950.

50

[WZD+20] Ruosong Wang, Peilin Zhong, Simon S Du, Russ R Salakhutdinov, and Lin F Yang.
Planning with general objective functions: Going beyond total rewards. In Annual
Conference on Neural Information Processing Systems (NeurIPS), 2020.

[XZZ18] Chang Xiao, Peilin Zhong, and Changxi Zheng. Bourgan: generative networks with
metric embeddings. In Proceedings of the 32nd International Conference on Neural
Information Processing Systems (NeurIPS), pages 2275–2286, 2018.

[Yao82] Andrew Chi-Chih Yao. On constructing minimum spanning trees in k-dimensional
spaces and related problems. SIAM Journal on Computing, 11(4):721–736, 1982.

[YN76] David B Yudin and Arkadi S Nemirovski. Evaluation of the information complexity of
mathematical programming problems. Ekonomika i Matematicheskie Metody, 12:128–
142, 1976.

51

	Introduction
	Our Results
	Main Results
	Technique Overviews
	Application and Future Direction

	Literature Review: Data Structure and Optimization
	Literature on Furthest Neighbor
	Previous Techniques for Speedup Optimization

	Preliminaries
	Notations
	Useful Facts

	Data Structures
	Exact Min-IP
	Approximate Furthest-Neighbor
	Min-IP via AFN
	Transformations
	Adaptive Queries
	Complex Vectors

	One-Sided Kadison-Singer via Furthest-Neighbor Search
	Useful Facts
	Problem Setup
	Approximate Greedy Lemma
	Algorithm Overviews
	An O(nmTmat(d,d,d)) Implementation
	An nTmat(d,d,m) Implementation
	Exact Data Structure: Curse of Dimensionality and Fast Query
	Approximate Data Structure: Fast Preprocessing and Approximate Query

	Experimental Design via Furthest-Neighbor Search
	Definition
	Useful Facts from Previous Work
	Algorithm
	Approximate Regret Lemma
	Approximate Swapping Lemma
	Approximate Swapping Lemma, Part 1
	Approximate Swapping Lemma, Part 2
	Implication of Swapping Lemma
	Main Result

	Solving Sub-task of CPM via Furthest-Neighbor Search
	Data Structure Design for Min Leverage Score
	Naive Implementation
	Min Leverage Score via AFN
	Initialization
	Update
	Query

	References

